知识森林:理论、方法与实践
全新正版 极速发货
¥
61.5
6.3折
¥
98
全新
库存8件
作者郑庆华 等
出版社科学出版社
ISBN9787030671813
出版时间2021-05
装帧平装
开本其他
定价98元
货号1202361088
上书时间2024-06-08
商品详情
- 品相描述:全新
- 商品描述
-
目录
前言
章 引言 1
1.1 知识碎片化问题 1
1.2 现有知识组织模型 2
1.2.1 主题图 2
1.2.2 知识图谱 3
1.3 本书的组织结构 5
第2章 知识森林模型 7
2.1 知识森林的形式化表示 7
2.2 知识森林的语义模型 9
2.3 知识森林的存储模型 11
2.4 小结 13
第3章 主题分面树生成 14
3.1 知识主题分面树 14
3.1.1 知识主题与分面的概念 14
3.1.2 主题分面树以及主题、分面间的联系 15
3.2 主题分面联合抽取 17
3.2.1 流水线式抽取的局限性 17
3.2.2 候选主题与分面抽取算法 19
3.2.3 主题分面联合抽取算法 24
3.2.4 测试验证 27
3.3 分面间上下位关系抽取 30
3.3.1 国内外相关研究 30
3.3.2 与传统上下位的区别和联系 32
3.3.3 基于Motif的分面间上下位关系抽取算法 33
3.3.4 测试验证 36
3.4 小结 37
第4章 学习依赖关系抽取 38
4.1 国内外相关研究 38
4.2 学习依赖关系的特征分析 40
4.2.1 学习依赖关系的局部性 40
4.2.2 术语分布的非对称性 41
4.3 拓扑与文本特征相结合的学习依赖关系挖掘 43
4.3.1 文本关联挖掘 44
4.3.2 候选知识主题对生成 44
4.3.3 学习依赖关系判别 45
4.3.4 分布系数??的敏感性分析 46
4.4 端到端的学习依赖关系挖掘 47
4.4.1 文本中术语及关系抽取 49
4.4.2 学习依赖关系判别 51
4.4.3 测试验证 52
4.5 小结 55
第5章 知识碎片向分面树的映射 56
5.1 文本知识碎片的映射 56
5.1.1 问题与挑战 56
5.1.2 国内外相关研究 57
5.1.3 文本分割与分面映射联合学习模型 61
5.1.4 测试验证 66
5.2 图像知识碎片的映射 70
5.2.1 国内外相关研究 71
5.2.2 小样本图像知识碎片映射模型 72
5.2.3 测试验证 77
5.2.4 未来示意图映射的挑战 79
5.3 小结 82
第6章 知识森林导学 83
6.1 学习路径规划 83
6.2 可对比知识主题生成 85
6.2.1 国内外相关研究 86
6.2.2 可对比知识主题生成框架 87
6.2.3 可对比知识主题匹配算法 89
6.3 基于嵌入学习的知识碎片检索 92
6.3.1 现有的知识碎片检索方法 92
6.3.2 基于嵌入学习的知识碎片检索方法 94
6.3.3 测试验证 102
6.3.4 未来知识森林碎片检索挑战 104
6.4 知识碎片检索的why-not问题 105
6.4.1 why-not问题概述 105
6.4.2 基于嵌入表示的why-not问题解释模型 106
6.4.3 测试验证 111
6.5 小结 114
第7章 知识森林可视化 116
7.1 概述 116
7.2 2D可视化 116
7.2.1 国内外相关研究 116
7.2.2 主题分面树绘制算法 122
7.2.3 认知关系布局算法 126
7.2.4 知识森林圆形布局交互方法 132
7.2.5 原型系统及用户评测 139
7.3 AR交互场景可视化 142
7.3.1 整体框架 143
7.3.2 场景判别和课程判别方法 144
7.3.3 知识主题实时跟踪方法 146
7.3.4 分面树与沙盘的自动绘制算法 146
7.3.5 导航学习路径推荐方法 150
7.3.6 ARKF系统使用场景展示 152
7.4 小结 156
参考文献 157
内容摘要
人类知识总量的快速增长与信息技术的发展加剧了知识碎片化问题。位置分散、内容片面、结构无序的碎片化知识了知识的可用性,成为新一代知识工程中的瓶颈问题。为此,本书提出一种新的知识图谱模型——知识森林,能够分面融合碎片化知识,又能体现知识主题间各类认知关系。全书共7章,章是知识森林的背景介绍,第2章介绍基本理论模型,第3~5章介绍知识森林构建的三个具体环节,第6、7章介绍如何利用知识森林进行导学以及知识森林的可视化技术。本书适合计算机、人工智能、物联网等专业的教师和研究生阅读,也可供知识图谱、自然语言理解、文本数据挖掘、信息知识检索等领域的科研人员参考。
— 没有更多了 —
以下为对购买帮助不大的评价