• 大数据征信及智能评估:征信大数据挖掘与智能分析技术
21年品牌 40万+商家 超1.5亿件商品

大数据征信及智能评估:征信大数据挖掘与智能分析技术

全新正版 极速发货

126.85 6.4折 198 全新

库存8件

广东广州
认证卖家担保交易快速发货售后保障

作者孙圣力 罗宁 张福浩

出版社清华大学出版社

ISBN9787302594666

出版时间2022-03

装帧精装

开本16开

定价198元

货号1202620670

上书时间2024-06-01

曲奇书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
    孙圣力,博士,北京大学副教授,南京博雅区块链研究院副院长,复旦大学计算机软件与理论专业博士;主要研究方向为大数据、数据科学、机器学习、智慧医疗、服务计算。

目录
第一部分  基础技术研究
  第1章  多源多模态征信大数据融合方法
    1.1  多模态融合概述
      1.1.1  研究背景与意义
      1.1.2  研究现状
      1.1.3  研究内容
    1.2  多模态融合相关理论技术
      1.2.1  众包标注
      1.2.2  众包数据的消噪
      1.2.3  图像分类
      1.2.4  多模态数据融合
      1.2.5  协同学习
    1.3  基于协同学习技术的决策级融合方法
      1.3.1  任务描述
      1.3.2  多源同构数据融合方法:CT-MID
      1.3.3  CT-MID模块说明
      1.3.4  实验分析
      1.3.5  方法分析
    1.4  基于多模态适配器的特征级融合方法
      1.4.1  任务描述
      1.4.2  多源异构数据融合方法:MLP-Adapter
      1.4.3  实验结果
    1.5  基于协同学习的多源数据融合原型系统
      1.5.1  系统组成单元
      1.5.2  功能展示
  第2章  大数据征信归因分析及模型可解释性研究
    2.1  大数据征信分析概述
      2.1.1  研究背景与意义
      2.1.2  研究现状
      2.1.3  问题与挑战
      2.1.4  研究内容
    2.2  相关理论技术
      2.2.1  特征选择方法
      2.2.2  因果模型
      2.2.3  模型的可解释方法
    2.3  归因分析技术研究
      2.3.1  归因分析总体流程设计
      2.3.2  实验评估:归因分析
    2.4  模型可解释性提升技术研究
      2.4.1  可解释性提升方法设计
      2.4.2  实验一:整体可解释性提升
      2.4.3  实验二:个体可解释性提升
    2.5  原型系统的设计与实现
      2.5.1  系统业务流程设计
      2.5.2  系统功能架构设计
      2.5.3  效果展示
      2.5.4  系统测试
第二部分  信用评估技术研究
  第3章  基于时序行为分析的信用评估技术
    3.1  时序行为信用评估概述
      3.1.1  研究背景与意义
      3.1.2  研究现状
      3.1.3  研究内容
    3.2  相关理论技术
      3.2.1  基于神经网络的模型
      3.2.2  图嵌入模型
    3.3  数据准备与特征工程
      3.3.1  数据准备
      3.3.2  数据观察
      3.3.3  数据清洗
      3.3.4  特征工程
    3.4  基于时序行为的征信评估模型设计
      3.4.1  模型总体设计
      3.4.2  基于Auto-Encoder LSTM模型的交易序列特征编码
      3.4.3  基于Node2Vec模型的行为序列特征编码
      3.4.4  基于特征融合的用户信用评估模型
    3.5  模型验证与原型系统
      3.5.1  模型验证
      3.5.2  原型系统设计与实现
  第4章  征信大数据频繁模式与关联规则挖掘
    4.1  征信大数据挖掘概述
      4.1.1  研究现状
      4.1.2  问题描述
      4.1.3  研究内容
    4.2  相关理论技术
      4.2.1  数据融合的相关技术
      4.2.2  动态关联规则挖掘的相关技术
    4.3  多源征信大数据融合方法
      4.3.1  数据融合
      4.3.2  数据融合方法
      4.3.3  多源异构数据的融合模型
      4.3.4  实验结果与分析
    4.4  结构化征信大数据动态关联规则挖掘算法
      4.4.1  动态关联规则的形式化定义
      4.4.2  与静态关联规则的比较
      4.4.3  动态关联规则的评价
      4.4.4  动态关联规则挖掘算法
      4.4.5  实验结果与分析
    4.5  流式半结构化征信大数据频繁项集挖掘算法
      4.5.1  数据流与半结构化数据
      4.5.2  树结构模型挖掘的相关定义
      4.5.3  两个改进
      4.5.4  改进的挖掘算法
    4.6  实验结果与分析
      4.6.1  实验数据
      4.6.2  实验结果
  第5章  信用风险违约识别与预警技术
    5.1  信用风险违约概述
      5.1.1  研究背景与意义
      5.1.2  研究现状
      5.1.3  研究内容
    5.2  相关理论技术
      5.2.1  个人信用评估指标体系
      5.2.2  个人信用评估模型技术
    5.3  信用风险数据与数据预处理
      5.3.1  数据来源
      5.3.2  数据信息
      5.3.3  缺失值分析
      5.3.4  分类变量
      5.3.5  连续变量的离散化
      5.3.6  异常值处理
      5.3.7  领域变量处理
    5.4  个人信用风险违约识别与预警模型设计
      5.4.1  模型设计分析
      5.4.2  组合模型优化
      5.4.3  D-S Stacking模型
    5.5  模型验证与原型系统
      5.5.1  系统业务流程
      5.5.2  系统架构设计
      5.5.3  原型系统效果评估
  第6章  信用环境的区域差异性影响因素
    6.1  信用环境的区域差异概述
      6.1.1  研究背景与意义
      6.1.2  研究现状
      6.1.3  研究内容
    6.2  相关理论技术
      6.2.1  数据准备
      6.2.2  空间自相关分析方法
      6.2.3  XGBoost算法
      6.2.4  随机森林
      6.2.5  TreeSHAP模型
    6.3  基于两种机器学习算法的我国城市商业信用环境指数模型
      6.3.1  我国城

内容摘要
    本书聚焦于个人层面的信用违约技术研究、风险预警与监控系统的实现,但其中的技术也可以便捷地应用于企业征信。全书由浅入深、循序渐进地讲述了大数据时代下的征信技术。全书分为三个部分,第一部分是基础技术研究,介绍了征信业务中多源、多模态数据的融合方法,以及大数据征信模型的归因分析与解释性研究;第二部分是信用评估技术研究,包括大数据征信场景下时序数据的挖掘与分析,违约风险评估预警技术,以及不同区域的差异性对于信用情况的影响;第三部分聚焦于信用评估系统研发,从全局角度描述了一个信用评估与监控预警系统的实现。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP