Hadoop海量数据处理
全新正版 极速发货
¥
33.73
5.7折
¥
59
全新
库存4件
作者范东来
出版社人民邮电出版社
ISBN9787115427465
出版时间2016-08
装帧其他
开本其他
定价59元
货号1201346207
上书时间2024-08-09
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
范东来,北京航空航天大学硕士,技术图书作者和译者,著有《Hadoop海量数据处理》(该书台湾地区繁体字版为《Hadoop:BigData技術詳解與專案實作》),译有《解读NoSQL》。BBD(数联铭品)大数据技术部负责人,大数据平台架构师,极客学院布道师。研究方向:并行图挖掘、去中心化应用。
目录
目录
基础篇:Hadoop基础
章 绪论 2
1.1 Hadoop和云计算 2
1.1.1 Hadoop的电梯演讲 2
1.1.2 Hadoop生态圈 3
1.1.3 云计算的定义 6
1.1.4 云计算的类型 7
1.1.5 Hadoop和云计算 8
1.2 Hadoop和大数据 9
1.2.1 大数据的定义 9
1.2.2 大数据的结构类型 10
1.2.3 大数据行业应用实例 12
1.2.4 Hadoop和大数据 13
1.2.5 其他大数据处理平台 14
1.3 数据挖掘和商业智能 15
1.3.1 数据挖掘的定义 15
1.3.2 数据仓库 17
1.3.3 操作数据库系统和数据仓库系统的区别 18
1.3.4 为什么需要分离的数据仓库 19
1.3.5 商业智能 19
1.3.6 大数据时代的商业智能 20
1.4 小结 21
第2章 环境准备 22
2.1 Hadoop的发行版本选择 22
2.1.1 Apache Hadoop 22
2.1.2 CDH 22
2.1.3 Hadoop的版本 23
2.1.4 如何选择Hadoop的版本 25
2.2 Hadoop架构 26
2.2.1 Hadoop HDFS架构 27
2.2.2 YARN架构 28
2.2.3 Hadoop架构 28
2.3 安装Hadoop 29
2.3.1 安装运行环境 30
2.3.2 修改主机名和用户名 36
2.3.3 配置静态IP地址 36
2.3.4 配置SSH无密码连接 37
2.3.5 安装JDK 38
2.3.6 配置Hadoop 39
2.3.7 格式化HDFS 42
2.3.8 启动Hadoop并验证安装 42
2.4 安装Hive 43
2.4.1 安装元数据库 44
2.4.2 修改Hive配置文件 44
2.4.3 验证安装 45
2.5 安装HBase 46
2.5.1 解压文件并修改Zookeeper相关配置 46
2.5.2 配置节点 46
2.5.3 配置环境变量 47
2.5.4 启动并验证 47
2.6 安装Sqoop 47
2.7 Cloudera Manager 48
2.8 小结 51
第3章 Hadoop的基石:HDFS 52
3.1 认识HDFS 52
3.1.1 HDFS的设计理念 54
3.1.2 HDFS的架构 54
3.1.3 HDFS容错 58
3.2 HDFS读取文件和写入文件 58
3.2.1 块的分布 59
3.2.2 数据读取 60
3.2.3 写入数据 61
3.2.4 数据完整性 62
3.3 如何访问HDFS 63
3.3.1 命令行接口 63
3.3.2 Java API 66
3.3.3 其他常用的接口 75
3.3.4 Web UI 75
3.4 HDFS中的新特性 76
3.4.1 NameNode HA 76
3.4.2 NameNode Federation 78
3.4.3 HDFS Snapshots 79
3.5 小结 79
第4章 YARN:统一资源管理和调平台 80
4.1 YARN是什么 80
4.2 统一资源管理和调度平台范型 81
4.2.1 集中式调度器 81
4.2.2 双层调度器 81
4.2.3 状态共享调度器 82
4.3 YARN的架构 82
4.3.1 ResourceManager 83
4.3.2 NodeManager 85
4.3.3 ApplicationMaster 87
4.3.4 YARN的资源表示模型Container 87
4.4 YARN的工作流程 88
4.5 YARN的调度器 89
4.5.1 YARN的资源管理机制 89
4.5.2 FIFO Scheduler 90
4.5.3 Capacity Scheduler 90
4.5.4 Fair Scheduler 91
4.6 YARN命令行 92
4.7 Apache Mesos 95
4.8 小结 96
第5章 分而治之的智慧:MapReduce 97
5.1 认识MapReduce 97
5.1.1 MapReduce的编程思想 98
5.1.2 MapReduce运行环境 100
5.1.3 MapReduce作业和任务 102
5.1.4 MapReduce的计算资源划分 102
5.1.5 MapReduce的局限性 103
5.2 Hello Word Count 104
5.2.1 Word Count的设计思路 104
5.2.2 编写Word Count 105
5.2.3 运行程序 107
5.2.4 还能更快吗 109
5.3 MapReduce的过程 109
5.3.1 从输入到输出 109
5.3.2 input 110
5.3.3 map及中间结果的输出 112
5.3.4 shuffle 113
5.3.5 reduce及最后结果的输出 115
5.3.6 sort 115
5.3.7 作业的进度组成 116
5.4 MapReduce的工作机制 116
5.4.1 作业提交 117
5.4.2 作业初始化 118
5.4.3 任务分配 118
5.4.4 任务执行 118
5.4.5 任务完成 118
5.4.6 推测执行 119
5.4.7 MapReduce容错 119
5.5 MapReduce编程 120
5.5.1 Writable类 120
5.5.2 编写Writable类 123
5.5.3 编写Mapper类 124
5.5.4 编写Reducer类 125
5.5.5 控制shuffle 126
5.5.6 控制sort 128
5.5.7 编写main函数 129
5.6 MapReduce编程实例:连接 130
5.6.1 设计思路 131
5.6.2 编写Mapper类 131
5.6.3 编写Reducer类 132
5.6.4 编写main函数 133
5.7 MapReduce编程实例:二次排序 134
5.7.1 设计思路 134
5.7.2 编写Mapper类 135
5.7.3 编写Partitioner类 136
5.7.4 编写SortComparator类 136
5.7.5 编写Reducer类 137
5.7.6 编写main函数 137
5.8 MapReduce编程实例:全排序 139
5.8.1 设计思路 139
5.8.2 编写代码 140
5.9 小结 141
第6章 SQL on Hadoop:Hive 142
6.1 认识Hive 142
6.1.1 从MapReduce到SQL 143
6.1.2 Hive架构 144
6.1.3 Hive与关系型数据库的区别 146
6.1.4 Hive命令的使用 147
6.2 数据类型和存储格式 149
6.2.1 基本数据类型 149
6.2.2 复杂数据类型 149
6.2.3 存储格式 150
6.2.4 数据格式 151
6.3 HQL:数据定义 152
6.3.1 Hive中的数据库 152
6.3.2 Hive中的表 154
6.3.3 创建表 154
6.3.4 管理表 156
6.3.5 外部表 156
6.3.6 分区表 156
6.3.7 删除表 158
6.3.8 修改表 158
6.4 HQL:数据操作 159
6.4.1 装载数据 159
6.4.2 通过查询语句向表中插入数据 160
6.4.3 利用动态分区向表中插入数据 160
6.4.4 通过CTAS加载数据 161
6.4.5 导出数据 161
6.5 HQL:数据查询 162
6.5.1 SELECT…FROM语句 162
6.5.2 WHERE语句 163
6.5.3 GROUP BY和HAVING语句 164
6.5.4 JOIN语句 164
6.5.5 ORDER BY和SORT BY语句 166
6.5.6 DISTRIBUTE BY和SORT BY
语句 167
6.5.7 CLUSTER BY 167
6.5.8 分桶和抽样 168
6.5.9 UNION ALL 168
6.6 Hive函数 168
6.6.1 标准函数 168
6.6.2 聚合函数 168
6.6.3 表生成函数 169
6.7 Hive用户自定义函数 169
6.7.1 UDF 169
6.7.2 UDAF 170
6.7.3 UDTF 171
6.7.4 运行 173
6.8 小结 173
第7章 SQL to Hadoop : Sqoop 174
7.1 一个Sqoop示例 174
7.2 导入过程 176
7.3 导出过程 178
7.4 Sqoop的使用 179
7.4.1 codegen 180
7.4.2 create-hive-table 180
7.4.3 eval 181
7.4.4 export 181
7.4.5 help 182
7.4.6 import 182
7.4.7 import-all-tables 183
7.4.8 job 184
7.4.9 list-databases 184
7.4.10 list-tables 184
7.4.11 merge 184
7.4.12 metastore 185
7.4.13 version 186
7.5 小结 186
第8章 HBase:HadoopDatabase 187
8.1 酸和碱:两种数据库事务方法论 187
8.1.1 ACID 188
8.1.2 BASE 188
8.2 CAP定理 188
8.3 NoSQL的架构模式 189
8.3.1 键值存储 189
8.3.2 图存储 190
8.3.3 列族存储 191
8.3.4 文档存储 192
8.4 HBase的架构模式 193
8.4.1 行键、列族、列和单元格 193
8.4.2 HMaster 194
8.4.3 Region和RegionServer 195
8.4.4 WAL 195
8.4.5 HFile 195
8.4.6 Zookeeper 197
8.4.7 HBase架构 197
8.5 HBase写入和读取数据 198
8.5.1 Region定位 198
8.5.2 HBase写入数据 199
8.5.3 HBase读取数据 199
8.6 HBase基础API 200
8.6.1 创建表 201
8.6.2 插入 202
8.6.3 读取 203
8.6.4 扫描 204
8.6.5 删除单元格 206
8.6.6 删除表 207
8.7 HBase不错API 207
8.7.1 过滤器 208
8.7.2 计数器 208
8.7.3 协处理器 209
8.8 &nb
— 没有更多了 —
以下为对购买帮助不大的评价