基于支持向量机的飞机故障诊断技术
全新正版 极速发货
¥
28.82
3.6折
¥
79
全新
仅1件
作者郎荣玲 等 编著
出版社国防工业出版社
ISBN9787118106275
出版时间2016-05
装帧精装
开本32开
定价79元
货号1201348245
上书时间2024-08-09
商品详情
- 品相描述:全新
- 商品描述
-
目录
第l章绪论
1.1基于支持向量机的飞机故障诊断方法的意义
1.2PHM技术应用现状
1.2.1PHM的功能及结构
1.2.2国外PHM技术的应用现状
1.2.3国内PHM技术的应用现状
1.2.4PHM目前存在的问题
1.3故障诊断与故障预报技术研究现状
1.3.1故障诊断技术
1.3.2故障预报技术
1.4支持向量机理论研究现状
1.4.1支持向量机学习算法
1.4.2支持向量机参数选取方法
1.4.3支持向量机模型算法验证
第2章支持向量机简介
2.1支持向量分类机
2.1.1最优分类面
2.1.2核函数
2.1.3多分类支持向量机
2.2支持向量回归机
2.2.1£一带超平面
2.2.2SVR模型推广于构造多分类器
2.3支持向量机训练算法
第3章支持向量分类模型研究
3.1概述
3.1.1SVC算法流程
3.1.2待解决的问题
3.2SVC的SMO算法实现
3.3SVC的参数选取
3.3.1高斯核参数a
3.3.2惩罚因子C
3.4实验分析
第4章支持向量回归模型研究
4.1概述
4.1.1SVR算法流程
4.1.2待解决的问题
4.2SVR的SM~)算法实现
4.3SVR的参数选取
4.3.1高斯核参数a
4.3.2惩罚因子C
4.3.3不敏感损失参数e
4.4实验分析
第5章基于支持向量机的不确定性问题处理
5.1概述
5.2建模
5.3模型求解
5.3.1对偶问题
5.3.2KKT条件
5.3.3SMO算法求解
5.4实验分析
5.4.1算法分析
5.4.2参数分析
第6章飞机状态监控系统及其监测指标分析
6.1飞机状态监控系统(ACMS)
6.1.1ACMS的组成与功能
6.1.2飞行数据获取方式
6.2机载设备性能指标
6.2.1机载设备工作性能的表示
6.2.2航空发动机性能评价指标
6.2.3机体结构性能评价指标
6.3发动机性能指标监测序列的特点分析
6.3.1综合分析
6.3.2平稳性分析
6.3.3趋势性分析
第7章飞行数据预处理
7.1概述
7.1.1异常值辨识方法
7.1.2噪声去除方法
7.2异常值辨识与剔除
7.2.1不合趋势项监测序列的异常值辨识与剔除算法
7.2.2含趋势项监测序列的异常值辨识与剔除算法
7.3基于奇异值分解的滤波消噪方法
第8章支持向量机应用分析
8.1概述
8.2航空电子设备故障诊断
8.2.1实验1标准滤波电路
8.2.2实验2线性中放电路
8.2.3规则提取验证
8.3航空发动机故障预报
8.3.1性能参数预测
8.3.2寿命监控与异常检测
第9章飞行数据驱动的健康管理系统
9.1系统设计
9.1.1功能设计
9.1.2总体结构
9.2维护系统设计
9.2.1功能和结构
9.2.2数据库设计
9.3故障诊断系统设计
9.3.1功能和结构
9.3.2推理诊断功能模块的设计
9.3.3自学习功能模块的设计
9.4故障预测系统设计
9.4.1功能和结构
9.4.2自回归滑动平均模型
参考文献
内容摘要
本书主要内容有:介绍了飞机的故障预测与健康管理技术的基本知识,并综述了飞机故障诊断与故障预测以及支持向量机技术的发展现状;系统介绍了飞机的状态监控系统以及飞行数据的地面获取途径,并总结和分析了机载设备性能指标的特点;系统的介绍了支持向量机原理,分析了建立支持向量分类机和回归机需要解决的问题,并将支持向量回归机推广应用于多分类问题;对支持向量分类机进行训练,解决了参数的选取以及降低训练过程的计算复杂度问题,利用UCI数据库对方法进行了评估和分析。
— 没有更多了 —
以下为对购买帮助不大的评价