目录 导读 1 Contributors 16 Foreword 19 Preface 23 1 Introduction 1 Eneko Agirre and Philip Edmonds 1.1 Word Sense Disambiguation 1 1.2 A Brief History of WSD Research 4 1.3 What is a Word Sense? 8 1.4 Applications of WSD 10 1.5 Basic Approaches to WSD 12 1.6 State-of-the-Art Performance 14 1.7 Promising Directions 15 1.8 Overview of This Book 19 1.9 Further Reading 21 References 22 2 Word Senses 29 Adam Kilgarriff 2.1 Introduction 29 2.2 Lexicographers 30 2.3 Philosophy 32 2.3.1 Meaning is Something You Do 32 2.3.2 The Fregean Tradition and Reification 33 2.3.3 Two Incompatible Semantics? 33 2.3.4 Implications for Word Senses 34 2.4 Lexicalization 35 2.5 Corpus Evidence 39 2.5.1 Lexicon Size 41 2.5.2 Quotations 42 2.6 Conclusion 43 2.7 Further Reading 44 Acknowledgments 45 References 45 3 Making Sense About Sense 47 Nancy Ide and Yorick Wilks 3.1 Introduction 47 3.2 WSD and the Lexicographers 49 3.3 WSD and Sense Inventories 51 3.4 NLP Applications and WSD 55 3.5 What Level of Sense Distinctions Do We Need for NLP, If Any? 58 3.6 What Now for WSD? 64 3.7 Conclusion 68 References 68 4 Evaluation of WSD Systems 75 Martha Palmer, Hwee Tou Ng and Hoa Trang Dang 4.1 Introduction 75 4.1.1 Terminology 76 4.1.2 Overview 80 4.2 Background 81 4.2.1 WordNet and Semcor 81 4.2.2 The Line and Interest Corpora 83 4.2.3 The DSO Corpus 84 4.2.4 Open Mind Word Expert 85 4.3 Evaluation Using Pseudo-Words 86 4.4 Senseval Evaluation Exercises 86 4.4.1 Senseval-187 Evaluation and Scoring 88 4.4.2 Senseval-288 English All-Words Task 89 English Lexical Sample Task 89 4.4.3 Comparison of Tagging Exercises 91 4.5 Sources of Inter-Annotator Disagreement 92 4.6 Granularity of Sense: Groupings for WordNet 95 4.6.1 Criteria for WordNet Sense Grouping 96 4.6.2 Analysis of Sense Grouping 97 4.7 Senseval-398 4.8 Discussion 99 References 102 5 Knowledge-Based Methods for WSD 107 Rada Mihalcea 5.1 Introduction 107 5.2 Lesk Algorithm 108 5.2.1 Variations of the Lesk Algorithm 110 Simulated Annealing 110 Simplified Lesk Algorithm 111 Augmented Semantic Spaces 113 Summary 113 5.3 Semantic Similarity 114 5.3.1 Measures of Semantic Similarity 114 5.3.2 Using Semantic Similarity Within a Local Context 117 5.3.3 Using Semantic Similarity Within a Global Context 118 5.4 Selectional Preferences 119 5.4.1 Preliminaries: Learning Word-to-Word Relations 120 5.4.2 Learning Selectional Preferences 120 5.4.3 Using Selectional Preferences 122 5.5 Heuristics for Word Sense Disambiguation 123 5.5.1 Most Frequent Sense 123 5.5.2 One Sense Per Discourse 124 5.5.3 One Sense Per Collocation 124 5.6 Knowledge-Based Methods at Senseval-2125 5.7 Conclusions 126 References 127 6 Unsupervised Corpus-Based Methods for WSD 133 Ted Pedersen 6.1 Introduction 133 6.1.1 Scope 134 6.1.2 Motivation 136 Distributional Methods 137 Translational Equivalence 139 6.1.3 Approaches 140 6.2 Type-Based Discrimination 141 6.2.1 Representation of Context 142 6.2.2 Algorithms 145 Latent Semantic Analysis (LSA) 146 Hyperspace Analogue to Language (HAL) 147 Clustering By Committee (CBC) 148 6.2.3 Discussion 150 6.3 Token-Based Discrimination 150 6.3.1 Representation of Context 151 6.3.2 Algorithms 151 Context Group Discrimination 152 McQuitty’s Similarity Analysis 154 6.3.3 Discussion 157 6.4 Translational Equivalence 158 6.4.1 Representation of Context 159 6.4.2 Algorithms 159 6.4.3 Discussion 160 6.5 Conclusions and the Way Forward 161 Acknowledgments 162 References 162 7 Supervised Corpus-Based Methods for WSD 167 Lluís M??rquez, Gerard Escudero, David Martínez and German Rigau 7.1 Introduction to Supervised WSD 167 7.1.1 Machine Learning for Classification 168 An Example on WSD 170 7.2 A Survey of Supervised WSD 171 7.2.1 Main Corpora Used 172 7.2.2 Main Sense Repositories 173 7.2.3 Representation of Examples by Means of Features 174 7.2.4 Main Approaches to Supervised WSD 175 Probabilistic Methods 175 Methods Based on the Similarity of the Examples 176 Methods Based on Discriminating Rules 177 Methods Based on Rule Combination 179 Linear Classifiers and Kernel-Based Approaches 179 Discourse Properties: The Yarowsky Bootstrapping Algorithm 181 7.2.5 Supervised Systems in the Senseval Evaluations 183 7.3 An Empirical Study of Supervised Algorithms for WSD 184 7.3.1 Five Learning Algorithms Under Study 185 Na?ve Bayes (NB) 185 Exemplar-Based Learning (kNN) 186 Decision Lists (DL) 187 AdaBoost (AB) 187 Support Vector Machines (SVM) 189 7.3.2 Empirical Evaluation on the DSO Corpus 190 Experiments 191 7.4 Current Challenges of the Supervised Approach 195 7.4.1 Right-Sized Training Sets 195 7.4.2 Porting Across Corpora 196 7.4.3 The Knowledge Acquisition Bottleneck 197 Automatic Acquisition of Training Examples 198 Active Learning 199 Combining Training Examples from Different Words 199 Parallel Corpora 200 7.4.4 Bootstrapping 201 7.4.5 Feature Selection and Parameter Optimization 202 7.4.6 Combination of Algorithms and Knowledge Sources 203 7.5 Conclusions and Future Trends 205 Acknowledgments 206 References 207 8 Knowledge Sources for WSD 217 Eneko Agirre and Mark Stevenson 8.1 Introduction 217 8.2 Knowledge Sources Relevant to WSD 218 8.2.1 Syntactic 219 Part of Speech (KS 1) 219 Morphology (KS 2) 219 Collocations (KS 3) 220 Subcategorization (KS 4) 220 8.2.2 Semantic 220 Frequency of Senses (KS 5) 220 Semantic Word Associations (KS 6) 221 Selectional Preferences (KS 7) 221 Semantic Roles (KS 8) 222 8.2.3 Pragmatic/Topical 222 Domain (KS 9) 222 Topical Word Association (KS 10) 222 Pragmatics (KS 11) 223 8.3 Features and Lexical Resources 223 8.3.1 Target-Word Specific Features 224 8.3.2 Local Features 225 8.3.3 Global Features 227 8.4 Identifying Knowledge Sources in Actual Systems 228 8.4.1 Senseval-2 Systems 229 8.4.2 Senseval-3 Systems 231 8.5 Comparison of Experimental Results 231 8.5.1 Senseval Results 232 8.5.2 Yarowsky and Florian (2002) 233 8.5.3 Lee and Ng (2002) 234 8.5.4 Martínez et al.(2002) 237 8.5.5 Agirre and Martínez (2001 a) 238 8.5.6 Stevenson and Wilks (2001) 240 8.6 Discussion 242 8.7 Conclusions 245 Acknowledgments 246 References 247 9 Automatic Acquisition of Lexical Information and Examples 253 Julio Gonzalo and Felisa Verdejo 9.1 Introduction 253 9.2 Mining Topical Knowledge About Word Senses 254 9.2.1 Topic Signatures 255 9.2.2 Association of Web Directories to Word Senses 257 9.3 Automatic Acquisition of Sense-Tagged Corpora 258 9.3.1 Acquisition by Direct Web Searching 258 9.3.2 Bootstrapping from Seed Examples 261 9.3.3 Acquisition via Web Directories 263 9.3.4 Acquisition via Cross-Language Evidence 264 9.3.5 Web-Based Cooperative Annotation 268 9.4 Discussion 269 Acknowledgments 271 References 272 10 Domain-Specific WSD 275 Paul Buitelaar, Bernardo Magnini, Carlo Strapparava and Piek Vossen 10.1 Introduction 275 10.2 Approaches to Domain-Specific WSD 277 10.2.1 Subject Codes 277 10.2.2 Topic Signatures and Topic Variation 282 Topic Signatures 282 Topic Variation 283 10.2.3 Domain Tuning 284 Top-down Domain Tuning 285 Bottom-up Domain Tuning 285 10.3 Domain-Specific Disambiguation in Applications 288 10.3.1 User-Modeling for Recommender Systems 288 10.3.2 Cross-Lingual Information Retrieval 289 10.3.3 The MEANING Project 292 10.4 Conclusions 295 References 296 11 WSD in NLP Applications 299 Philip Resnik 11.1 Introduction 299 11.2 Why WSD? 300 Argument from Faith 300 Argument by Analogy 301 Argument from Specific Applications 302 11.3 Traditional WSD in Applications 303 11.3.1 WSD in Traditional Information Retrieval 304 11.3.2 WSD in Applications Related to Information Retrieval 307 Cross-Language IR 308 Question Answering 309 Document Classification 312 11.3.3 WSD in Traditional Machine Translation 313 11.3.4 Sense Ambiguity in Statistical Machine Translation 315 11.3.5 Other Emerging Applications 317 11.4 Alternative Conceptions of Word Sense 320 11.4.1 Richer Linguistic Representations 320 11.4.2 Patterns of Usage 321 11.4.3 Cross-Language Relationships 323 11.5 Conclusions 325 Acknowledgments 325 References 326 A Resources for WSD 339 A.1 Sense Inventories 339 A.1.1 Dictionaries 339 A.1.2 Thesauri 341 A.1.3 Lexical Knowledge Bases 341 A.2 Corpora 343 A.2.1
以下为对购买帮助不大的评价