• Pandas通关实战
  • Pandas通关实战
  • Pandas通关实战
  • Pandas通关实战
  • Pandas通关实战
  • Pandas通关实战
21年品牌 40万+商家 超1.5亿件商品

Pandas通关实战

全新正版 极速发货

75.95 6.4折 119 全新

库存2件

广东广州
认证卖家担保交易快速发货售后保障

作者黄福星

出版社清华大学出版社

ISBN9787302600619

出版时间2022-08

装帧平装

开本32开

定价119元

货号1202718249

上书时间2024-08-07

谢岳书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
黄福星,精益六西格玛黑带,物流职业经理人(运营总监)。20多年工作经历,职业生涯横跨大型生产制造、综合保税物流与供应链、快递快运与新零售等。在信息流指导物流、数据指导改善、物流降本增效方面经验丰富,能够熟练地将精益改善技术与大数据分析技术运用于各类现场管理。

目录
第1篇入门篇

第1章Python简介

1.1Pandas简介

1.2Pandas数据分析

1.3Jupyter与Anaconda

1.4Anaconda、conda与pip

1.4.1Anaconda

1.4.2conda

1.4.3Anaconda与conda

1.5Anaconda的下载与安装

1.6Anaconda安装简介

1.6.1安装步骤

1.6.2AnacondaNavigator简介

1.6.3AnacondaPrompt使用简介

1.6.4AnacondaNavigator与AnacondaPrompt

1.6.5conda与pip

1.6.6Nbextensions

1.7JupyterNotebook简介

1.7.1代码模式

1.7.2Markdown模式

1.8JupyterNotebook快捷键简介

1.9本章回顾

第2章NumPy基础

2.1对象、数据、数组

2.1.1位与字节

2.1.2对象

2.1.3数组

2.2数组的创建方式

2.2.1ndarray

2.2.2np.array()

2.2.3np.arange()

2.2.4np.linspace()

2.2.5np的特殊函数

2.3数据的基本属性

2.3.1NumPy数组属性

2.3.2改变数组的形状

2.3.3数组堆叠与分割

2.3.4广播机制

2.4通用函数(ufunc)

2.4.1排序函数

2.4.2一元函数

2.4.3多元函数

2.4.4数学函数

2.4.5随机函数

2.4.6字符串函数

2.4.7条件操作

2.4.8高阶操作

2.5本章回顾

第2篇基础篇

第3章Pandas入门

3.1Series

3.1.1Series基础知识

3.1.2Series的构建

3.1.3Series的常用转换方法

3.1.4Series的“十八招”

3.2DataFrame

3.2.1DataFrame基础知识

3.2.2创建

3.2.3DataFrame相关知识

3.3本章回顾

第4章数据筛选

4.1Python基础

4.1.1运算符

4.1.2视图与复制

4.1.3常用操作

4.2条件表达式

4.2.1条件筛选(索引)

4.2.2条件查询

4.2.3条件赋值

4.3数据删除

4.3.1缺失值

4.3.2重复值

4.3.3异常值

4.4数据重组

4.4.1填充

4.4.2重排

4.5axis转换

4.5.1rename()

4.5.2rename_axis()

4.5.3reindex()

4.5.4reset_index()

4.5.5set_index()

4.5.6MultiIndex()

4.6本章回顾

第3篇基础强化篇

第5章数据转换

5.1基础知识

5.1.1程序结构

5.1.2循环语句

5.2映射函数

5.2.1map()

5.2.2apply()

5.2.3applymap()

5.3各类转换

5.3.1数据类型转换

5.3.2数据结构转换

5.3.3文本格式转换

5.3.4style样式转换

5.4本章回顾

第6章文本转换

6.1文本字符串

6.1.1文本基础

6.1.2应用流程

6.2Python字符串

6.2.1识别阶段(Identity)

6.2.2清洗阶段(Elimilate)

6.2.3组合阶段(Combine)

6.2.4转换重组(Rearrange)

6.3正则表达式

6.3.1元字符

6.3.2用法

6.4Pandas的方法

6.4.1识别阶段(Identity)

6.4.2转换重组(Rearrange)

6.5本章回顾

第7章数据获取

7.1读取数据源

7.1.1pd.read_excel()

7.1.2pd.ExcelFile.parse()

7.1.3pd.read_csv()

7.2存储数据

7.2.1df.to_excel()

7.2.2pd.ExcelWriter()

7.2.3共性总结

7.3追加与合并

7.3.1(常规)追加

7.3.2追加(append)

7.3.3合并(combine)

7.3.4连接(join)

7.3.5按轴向合并(concat)

7.3.6融合(merge)

7.4文档的批量操作

7.4.1批量合并同一文件夹中的workbook

7.4.2批量合并同一文件工作簿中的worksheet

7.4.3批量更改DataFrame中的列名

7.4.4批量拆分DataFrame

7.5与xlwings的互动

7.5.1创建新工作簿

7.5.2批量修改电子表格名称

7.5.3在新增电子表格中插入图表

7.6本章回顾

第4篇进阶篇

第8章数据处理

8.1统计学基础

8.1.1概率与数理统计

8.1.2数据的离散化

8.1.3四则运算

8.2数据操作

8.3DataFrame处理

8.3.1Pandas的方法链

8.3.2assign()

8.3.3eval()

8.3.4pipe管道

8.4本章回顾

第9章数据分组

9.1Split阶段

9.1.1by参数

9.1.2axis参数

9.1.3level参数

9.1.4as_index参数

9.1.5dropna参数

9.2Apply阶段

9.2.1直接聚合

9.2.2agg

9.2.3map

9.2.4apply

9.2.5transform

9.2.6filter

9.3透视表

9.4进阶应用

9.4.1assign

9.4.2pipe管道

9.5批量保存分组对象

9.5.1保存为同一文件夹内的多个工作簿

9.5.2保存为同一工作簿中的多个工作表

9.5.3保存为多个工作簿中的多个工作表

9.6本章回顾

第10章时间序列

10.1Excel时间函数

10.2datetime模块

10.2.1date类

10.2.2time类

10.2.3datetime类

10.2.4timedelta类

10.3时间点

10.3.1pd.to_datetime

10.3.2pd.Timestamp

10.3.3DatetimeIndex时间戳索引

10.3.4pd.date_range()

10.4时间段

10.4.1Period

10.4.2Period_range

10.4.3asfreq时期的频率转换

10.4.4Timestamp与Period互相转换

10.5时间差

10.5.1运算规则说明

10.5.2参数的传递方式

10.6重采样

10.6.1使用方法

10.6.2降采样

10.6.3升采样和插值

10.6.4其他采样

10.7偏移

10.7.1shift()

10.7.2diff()

10.7.3rolling()

10.8本章回顾

第11章数据可视化

11.1可视化

11.1.1可视化基础

11.1.2可视化图形

11.2Matplotlib

11.2.1基本语法

11.2.2可视化的应用流程

11.2.3图表的选择与应用

11.3df.plot()

11.3.1参数对照表

11.3.2应用说明

11.4Seaborn

11.4.1设置

11.4.2图表应用

11.5本章回顾

11.5.1本章内容回顾

11.5.2时序数据图表化

第5篇案例篇

第12章实战案例分析

12.1项目说明

12.1.1行业描述

12.1.2项目背景

12.1.3项目推行计划

12.1.4KPI指标体系

12.2数据现状

12.2.1数据来源说明

12.2.2获取数据

12.2.3数据转换

12.3数据探索

12.3.1客户订单量

12.3.2业务的相关性

12.3.3订单消费额

12.3.4探索性挖掘

12.3.5盈利情况

12.4数据分析结论

12.4.1数据质量现状

12.4.2后续改善要求

12.4.3指导意见

12.4.4方法论整理

内容摘要
本书系统阐述了Pandas基础知识、应用原理,以及应用流程和应用技巧等实战知识。
全书共分为5篇:第一篇为入门篇(第1和2章),第二篇为基础篇(第3和4章),第三篇为基础强化篇(第5~7章),第四篇为进阶篇(第8~11章), 第五篇为案例篇(第12章)。书中主要内容包括Python简介、NumPy基础、Pandas入门、数据筛选、数据转换、文本转换、数据获取、数据处理、数据分组、时序分析、数据可视化、通关案例。
本书可作为Python数据分析的入门与进阶书籍,适用于有一定Python基础的读者、对数据分析感兴趣的学生,也可作为数据分析及其它编程爱好者、IT培训机构的参考书籍。

主编推荐
本书秉承Less is more(少即是多)的原则,追求“简约但不简单”的风格。从入门篇到进阶篇的11个章节,主要都是围绕着一个简单的“7行8列的数据”进行有效地讲解,把Pandas中使用频率优选的或效率优选的80%的函数、方法、属性全部有效地串接起来,减少读者浪费时间去理解不同的数据源,让更多的精力聚焦于专业知识的学习。

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP