特殊函数概论
全新正版 极速发货
¥
57.88
6.4折
¥
90
全新
库存17件
作者王竹溪
出版社北京大学出版社
ISBN9787301200490
出版时间2012-07
装帧其他
开本16开
定价90元
货号1200345252
上书时间2024-06-13
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
郭敦仁(1917-2000),北京大学物理系教授。早年就读于西南联大物理系。先后在清华大学、北京大学物理系任教,曾任物理学教材编审委员会委员、中国物理学会物理学名词审定委员会委员。除长期从事数学物理方法及相关课程的教学外,还讲授过其他多门物理学课程。著有《特殊函数概论》(与王竹溪先生合著)、《数学物理方法》(1987年获全国优秀教材奖)、《量子力学初步》及《电动力学》(与胡慧玲先生合著,在台湾出版)等,并有多本译著。
王竹溪(1911—1983),1929年入清华大学,1935年清华大学研究院毕业,同年入英国剑桥大学,1938年获博士学位。1938年回国后,先后任西南联大教授,清华大学教授兼物理学系主任,北京大学物理系教授,北京大学副校长。1955年当选为中科院首批院士。曾任《中国科学》副主编、《物理学报》主编、中国物理学会副理事长、中国物理学会物理学名词审定委员会主任、 理科教材编审委员会主任等职。王竹溪先生在理论物理的各领域,特别是在热力学、统计物理学和数学物理方面具有很深的造诣。著有《热力学》(1987年获全国优秀教材特等奖)、《统计物理学导论》及《简明十位对数表》,与郭敦仁合著《特殊函数概论》等,发表过学术论文30余篇。其中前两种均为我国在该方面的首次自编著作。他还编有《新部首字典》,收字近5万。
目录
第一章 函数用无穷级数和无穷乘积展开
1.1 伯努利(Bernoulli)多项式与伯努利数
1.2 欧勒(Euler)多项式与欧勒数
1.3 欧勒-麦克洛临(Euler-Maclaurin)公式
1.4 拉格朗日(Lagrange)展开公式
1.5 半纯函数的有理分式展开.米塔格-累夫勒(Mittag-Leffler)定理
1.6 无穷乘积
1.7 函数的无穷乘积展开.外氏(weierstrass)定理
1.8 渐近展开
1.9 拉普拉斯(Laplace)积分的渐近展开.瓦特孙(Watson)引理
1.10 用正交函数组展开
习题
第二章 二阶线性常微分方程
2.1 二阶线性常微分方程的奇点
2.2 方程常点邻域内的解
2.3 方程奇点邻域内的解
2.4 正则解.正则奇点
2.5 夫罗比尼斯(Frobenius)方法
2.6 无穷远点
2.7 傅克斯(Fuchs)型方程
2.8 具有五个正则奇点的傅克斯型方程
2.9 具有三个正则奇点的傅克斯型方程
2.10 非正则奇点.正则形式解
2.11 非正则奇点.常规解和次常规解
2.12 积分解法.基本原理
2.13 拉普拉斯型方程和拉氏变换
2.14 欧勒变换
习题
第三章 伽马函数
3.1 伽马函数的定义
3.2 递推关系
3.3 欧勒无穷乘积公式”
3.4 外氏(Weierstrass)无穷乘积
3.5 伽马函数与三角函数的联系
3.6 乘积公式
3.7 围道积分
3.8 欧勒第一类积分.B函数
3.9 双周围道积分
3.10 狄里希累(Dirichlet)积分
3.11 г函数的对数微商
3.12 渐近展开式
3.13 渐近展开式的另一导出法
3.14 里曼(Riemann)ζ函数
3.15 ζ函数的函数方程
3.16 s为整数时ζ(s,a)之值
3.17 厄密(Hermite)公式
3.18 与伽马函数的联系
3.19 ζ函数的欧勒乘积
3.20 ζ函数的里曼积分
3.21 伽马函数的渐近展开的又一导出法
3.22 ζ函数的计算
习题
第四章 超几何函数
4.1 超几何级数和超几何函数
4.2 邻次函数之间的关系
4.3 超几何方程的其他解用超几何函数表示
4.4 指标差为整数时超几何方程的第二解
4.5 超几何函数的积分表示
4.6 超几何函数的巴恩斯(Barnes)积分表示
4.7 F(α,β,γ,1)之值
……
第五章 勒让德函数
第六章 合流超几何函数
第七章 贝塞耳函数
第八章 外氏椭圆函数
第九章 忒塔函数
第十章 雅氏椭圆函数
第十一章 拉梅函数
第十二章 马丢函数
附录
参考书目
符号
索引
外国人名对照索引
出版后记
内容摘要
《特殊函数概论/经典系列》较系统地讲述一些主要的特殊函数,如г函数、ζ函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等。在各章之末还附有习题,习题中包含了一些有用的公式作为本书正文的补充。
《特殊函数概论/经典系列》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用。本书由王竹溪、郭敦仁编著。
— 没有更多了 —
以下为对购买帮助不大的评价