【假一罚四】Python大数据分析与应用实战余本国,刘宁,李春报 著
集团直发,全新正版书籍,假一罚四,放心选购。24小时内发货。
¥
54
5.0折
¥
109
全新
库存25件
作者余本国,刘宁,李春报 著
出版社电子工业出版社
ISBN9787121421976
出版时间2021-12
装帧平装
开本16开
定价109元
货号31289259
上书时间2024-10-26
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
余本国,博士,硕士导师,现工作于海南医学院生物医学信息与工程学院。主讲高等数学、微积分、Python语言、大数据分析基础等课程。2012年到加拿大York University做访问学者。出版《Python数据分析基础》《基于Python的大数据分析基础及实战》《Python在机器学习中的应用》《PyTorch深度学习入门与实战》《Python编程与数据分析应用》等书。
刘宁,深圳信号与信息处理专业硕士,目前从事智慧城市、数字政府建设等相关工作。曾发表SCIContent-based image retrieval using high-dimensional informatiogeometry,出版《高维信息几何与几何不变量》等著作。
李春报
海南医学院现代教育技术中心实验师,从事教育领域信息化研究工作,兼任海南信息化协会监事长,海南省网络安全协会专家等职。
目录
第1章 Python语法基础1
1.1 安装Anaconda1
1.1.1 代码提示4
1.1.2 变量浏览5
1.1.3 安装第三方库5
1.2 语法基础6
1.2.1 字符串、列表、元组、字典和
集合6
1.2.2 条件判断、循环和函数13
1.2.3 异常17
1.2.4 特殊函数20
1.3 Python基础库应用入门22
1.3.1 NumPy库应用入门23
1.3.2 Pandas库应用入门29
1.3.3 Matplotlib库应用入门40
1.4 本章小结45
第2章 天气数据的获取与建模分析52
2.1 准备工作52
2.2 利用抓取方法获取天气数据54
2.2.1 网页解析54
2.2.2 抓取一个静态页面中的天气
数据57
2.2.3 抓取历史天气数据60
2.3 天气数据可视化63
2.3.1 查看数据基本信息63
2.3.2 变换数据格式64
2.3.3 气温走势的折线图66
2.3.4 历年气温对比图67
2.3.5 天气情况的柱状图69
2.3.6 使用Tableau制作天气情况的
气泡云图70
2.3.7 风向占比的饼图72
2.3.8 使用windrose库绘制风玫瑰图73
2.4 机器学习在天气预报中的应用76
2.4.1 线性回归的基本概念76
2.4.2 使用一元线性回归预测气温77
2.4.3 使用多元线性回归预测气温84
2.5 本章小结91
第3章 养成游戏中人物的数据搭建92
3.1 准备工作92
3.2 利用Pyecharts库进行数据基本情况分析94
3.2.1 感染人数分布图94
3.2.2 病情分布图96
3.2.3 病症情况堆叠图97
3.2.4 绘制死亡、出院情况折线图98
3.2.5 病情热力图100
3.2.6 病情分布象形图101
3.2.7 人口流动示意图103
3.3 感染病例分析105
3.3.1 基本信息统计106
3.3.2 使用直方图展示感染周期108
3.3.3 使用词云图展示死亡病例情况111
3.4 疫情趋势预测114
3.4.1 利用逻辑方程预测感染人数115
3.4.2 利用SIR模型进行疫情预测120
3.4.3 Logistic模型和SIR模型的
对比128
3.5 本章小结131
第4章 航空数据分析132
4.1 准备工作132
4.2 基本情况统计分析135
4.2.1 查看数据的基本信息135
4.2.2 航空公司、机型分布137
4.2.3 展示各个城市航班数量的3D
地图139
4.2.4 从首都机场出发的桑基图142
4.2.5 通过关系图展示航线145
4.3 利用Floyd算法计算最短飞行时间148
4.3.1 Floyd算法简介148
4.3.2 Floyd算法的流程150
4.3.3 算法程序实现150
4.3.4 结果分析154
4.4 本章小结158
第5章 市民服务热线文本数据分析160
5.1 准备工作160
5.2 基本情况分析162
5.2.1 数据分布基本信息162
5.2.2 每日平均工单量分析165
5.2.3 来电时间分析166
5.2.4 工单类型分析167
5.3 利用词云图展示工单内容171
5.3.1 工单分词171
5.3.2 去除停用词172
5.3.3 词频统计173
5.3.4 市民反映问题词云图175
5.3.5 保存数据176
5.4 基于朴素贝叶斯的工单自动分类转办177
5.4.1 需求概述177
5.4.2 朴素贝叶斯模型的基本概念177
5.4.3 朴素贝叶斯文本分类算法的
流程181
5.4.4 程序实现182
5.5 基于K-Means算法和PCA方法降维的
热点问题挖掘189
5.5.1 应用场景189
5.5.2 K-Means算法和PCA方法的
基本原理189
5.5.3 热点问题挖掘算法的流程193
5.5.4 程序实现194
5.6 本章小结205
第6章 决策树信贷风险控制206
6.1 准备工作206
6.2 数据集基本情况分析209
6.2.1 查看数据大小和缺失情况209
6.2.2 绘制直方图查看数据的分布
情况211
6.2.3 绘制直方图的3种方法212
6.2.4 通过箱型图查看异常值的情况213
6.2.5 异常值和缺失值的处理217
6.2.6 使用小提琴图展示预处理后的
数据218
6.3 利用决策树进行信贷数据建模219
6.3.1 决策树原理简介219
6.3.2 决策树信贷建模流程225
6.3.3 利用scikit-learn库实现决策树
风险控制算法226
6.3.4 模型优化231
6.4 本章小结233
第7章 利用深度学习进行垃圾图片分类234
7.1 准备工作234
7.2 深度学习的基本原理237
7.2.1 CNN的基本原理237
7.2.2 Keras库简介240
7.3 利用Keras库实现基于CNN的垃圾
图片分类241
7.3.1 算法流程241
7.3.2 数据预处理241
7.3.3 CNN模型实现247
7.4 优化CNN模型252
7.4.1 选择优化器252
7.4.2 选择损失函数254
7.4.3 调整模型256
7.4.4 图片增强259
7.4.5 改变学习率263
7.5 模型应用265
7.6 本章小结268
第8章 协同过滤和矩阵分解推荐算法
分析269
8.1 准备工作269
8.2 基于协同过滤算法的短视频完播情况
分析271
8.2.1 基于用户的协同过滤算法的
原理271
8.2.2 算法流程274
8.2.3 程序实现275
8.3 基于矩阵分解算法的短视频完播情况
预测283
8.3.1 算法原理283
8.3.2 利用Surprise库实现SVD
算法286
8.4 几种方法在测试数据集中的表现289
8.5 本章小结291
第9章 《红楼梦》文本数据分析292
9.1 准备工作292
9.1.1 编程环境292
9.1.2 数据情况简介293
9.2 分词294
9.2.1 读取数据295
9.2.2 数据预处理298
9.2.3 分词及去除停用词306
9.2.4 制作词云图307
9.3 文本聚类分析316
9.3.1 构建分词TF-IDF矩阵317
9.3.2 K-Means聚类318
9.3.3 MDS降维320
9.3.4 PCA降维321
9.3.5 HC聚类323
9.3.6 t -SNE高维数据可视化325
9.4 LDA主题模型326
9.5 人物社交网络分析332
9.6 本章小结338
附录A 抓取数据请求头查询339
附录B GraphViz库的安装方法341
附录C 在Windows 10中安装TensorFlow
的方法343
参考文献346
致射348
内容摘要
本书是介绍如何用Python进行数据处理和分析的学习实战指南。主要内容包括Python语言基础、数据处理、数据分析、数据可视化图形的制作,以及利用Python对数据库的的贝叶斯操作、利用深度学习技术对模型进行优化等内容。本书主要分为3部分:第1部分包括第1章主要讲解Python的基础知识,第2部分包括第2~6章为实战案例,第3部分包括第7~8章主要讲解利用深度学习和协同过滤技术对大数据分析进行为拓展与延伸。本书内容丰富,讲解通俗易懂,适合本科生、研究生,以及对Python语言感兴趣或者想要使用Python语言进行数据分析的广大读者。
主编推荐
"一本书讲透大数据分析知识点,全书通过8个多角度案例,深入讲解大数据分析与应用中的疑难点。通过当前很流行的Python语言,为那些想学习和掌握大数据分析应用的读者提供一本“看了就能学会”的书。
《Python大数据分析与应用实战》全部通过在实际场景中对大数据的应用,以及使用合适的算法进行应用,并用浅显易懂的代码去实现相应的目的,完成数据搭建、分析、文本数据分析、数据集与决策树,以及垃圾图片分类、协同过滤和聚类算法等经典知识点的实际应用。"
— 没有更多了 —
以下为对购买帮助不大的评价