目录 1 Preface: the pursuit of symmetries 2 Finite groups: an introduction 2.1 Group axioms 2.2 Finite groups of low order 2.3 Permutations 2.4 Basic concepts 2.4.1 Conjugation 2.4.2 Simple groups 2.4.3 Sylow's criteria 2.4.4 Semi-direct product 2.4.5 Young Tableaux 3 Finite groups: representations 3.1 Introduction 3.2 Schur's lemmas 3.3 The ,,44 character table 3.4 Kronecker products 3.5 Real and complex representations 3.6 Embeddings 3.7 Zn character table 3.8 Dn character table 3.9 Q2, character table 3.10 Some semi-direct products 3.11 Induced representations 3.12 Invariants 3.13 Coverings 4 Hilbert spaces 4.1 Finite Hilbert spaces 4.2 Fermi oscillators 4.3 Infinite Hilbert spaces 5 SU(2) 5.1 Introduction 5.2 Some representations 5.3 From Lie algebras to Lie groups 5.4 SU(2) → SU(1, 1) 5.5 Selected SU(2) applications 5.5.1 The isotropic harmonic oscillator 5.5.2 The Bohr atom 5.5.3 Isotopic spin 6 SU(3) 6.1 SU(3) algebra 6.2 α-Basis 6.3 β-Basis 6.4 α'-Basis 6.5 The triplet representation 6.6 The Chevalley basis 6.7 SU(3) in physics 6.7.1 The isotropic harmonic oscillator redux 6.7.2 The Elliott model 6.7.3 The Sakata model 6.7.4 The Eightfold Way 7 Classification of compact simple Lie algebras 7.1 Classification 7.2 Simple roots 7.3 Rank-two algebras 7.4 Dynkin diagrams 7.5 Orthonormal bases 8 Lie algebras: representation theory 8.1 Representation basics 8.2 A3 fundamentals 8.3 The Weyl group 8.4 Orthogonal Lie algebras 8.5 Spinor representations 8.5.1 SO(2n) spinors 8.5.2 SO(2n + 1) spinors 8.5.3 Clifford algebra construction 8.6 Casimir invariants and Dynkin indices 8.7 Embeddings 8.8 Oscillator representations 8.9 Verma modules 8.9.1 Weyl dimension formula 8.9.2 Verma basis 9 Finite groups: the road to simplicity 9.1 Matrices over Galois fields 9.1.1 PSL2(7) 9.1.2 A doubly transitive group 9.2 Chevalley groups 9.3 A fleeting glimpse at the sporadic groups 10 Beyond Lie algebras 10.1 Serre presentation 10.2 Affine Kac-Moody algebras 10.3 Super algebras 11 The groups of the Standard Model 11.1 Space-time symmetries 11.1.1 The Lorentz and Poincar6 groups 11.1.2 The conformal group 11.2 Beyond space-time symmetries 11.2.1 Color and the quark model 11.3 Invariant Lagrangians 11.4 Non-Abelian gauge theories 11.5 The Standard Model 11.6 Grand Unification 11.7 Possible family symmetries 11.7.1 Finite SU(2) and SO(3) subgroups 11.7.2 Finite SU(3) subgroups 12 Exceptional structures 12.1 Hurwitz algebras 12.2 Matrices over Hurwitz algebras 12.3 The Magic Square Appendix 1 Properties of some finite groups Appendix 2 Properties of selected Lie algebras References Index
以下为对购买帮助不大的评价