零基础实践深度学习
图书均为1本 上下册及套装勿拍
¥
37
2.9折
¥
128
八五品
仅1件
作者毕然;孙高峰;周湘阳;刘威威
出版社清华大学出版社
出版时间2020-12
版次1
装帧其他
货号9787302567516
上书时间2024-11-07
商品详情
- 品相描述:八五品
图书标准信息
-
作者
毕然;孙高峰;周湘阳;刘威威
-
出版社
清华大学出版社
-
出版时间
2020-12
-
版次
1
-
ISBN
9787302567516
-
定价
128.00元
-
装帧
其他
-
开本
16开
-
纸张
胶版纸
-
页数
443页
-
字数
0.72千字
- 【内容简介】
-
《零基础实践深度学习》从人工智能、机器学习和深度学习三者的关系开始,以深度学习在计算机视觉、自然语言处理和推荐系统的应用实践为主线,逐步剖析模型原理和代码实现。书中的内容深入浅出,通过原理与代码结合、产业实践和作业题结合的方式,帮助读者更好掌握深度学习的相关知识和深度学习开源框架的使用方法。为了让更多的读者从中受益,快速应对复杂多变的AI应用,书中还介绍各种模型资源和辅助工具,旨在帮助读者在人工智能的战场上武装到牙齿,和“AI大师”一样无往不利。 人工智能是一门跨学科的技术,本书可作为深度学习的入门读物,也可作为人工智能或相关学科本科生和研究生的教材,还可供AI爱好者和从业者使用。
- 【作者简介】
-
毕然,百度杰出架构师,飞桨产品负责人,专注数据分析、商业战略、机器学习和人工智能等领域。曾担任百度搜索战略分析负责人、视觉搜索算法负责人等,获得首届百度最高奖。出品过《大数据分析的道与术》、《机器学习的思考故事》、《零基础实践深度学习》和《如何系统化的分析业务和战略》等系列课程,其中前三个课程著有同名书籍。
- 【目录】
-
第1章零基础入门深度学习
1.1机器学习和深度学习综述
1.1.1人工智能、机器学习、深度学习的关系
1.1.2机器学习
1.1.3深度学习
1.1.4作业
1.2使用Python和NumPy构建神经网络模型
1.2.1波士顿房价预测任务
1.2.2构建波士顿房价预测任务的神经网络模型
1.2.3小结
1.2.4作业
1.3飞桨开源深度学习平台介绍
1.3.1深度学习框架
1.3.2飞桨开源深度学习平台
1.3.3作业
1.4使用飞桨重写房价预测模型
1.4.1飞桨深度学习平台设计之“道”
1.4.2使用飞桨构建波士顿房价预测模型
1.4.3作业
1.5NumPy介绍
1.5.1概述
1.5.2基础数据类型: ndarray数组
1.5.3随机数np.random
1.5.4线性代数
1.5.5NumPy保存和导入文件
1.5.6NumPy应用举例
1.5.7作业
第2章一个案例带你吃透深度学习
2.1使用飞桨完成手写数字识别模型
2.1.1手写数字识别任务
2.1.2构建手写数字识别的神经网络模型
2.1.3飞桨各模型代码结构一致,大大降低了用户的编码难度
2.1.4采用“横纵式”教学法,适用于深度学习初学者
2.2通过极简方案快速构建手写数字识别模型
2.2.1通过极简方案构建手写数字识别模型
2.2.2作业
2.3“手写数字识别”之数据处理
2.3.1概述
2.3.2读入数据并划分数据集
2.3.3训练样本乱序并生成批次数据
2.3.4校验数据有效性
2.3.5封装数据读取与处理函数
2.3.6异步数据读取
2.4“手写数字识别”之网络结构
2.4.1概述
2.4.2经典的全连接神经网络
2.4.3卷积神经网络
2.5“手写数字识别”之损失函数
2.5.1概述
2.5.2分类任务的损失函数
2.5.3作业
2.6“手写数字识别”之优化算法
2.6.1概述
2.6.2设置学习率
2.6.3学习率的主流优化算法
2.6.4作业
2.7“手写数字识别”之资源配置
2.7.1概述
2.7.2单GPU训练
2.7.3分布式训练
2.8“手写数字识别”之训练调试与优化
2.8.1概述
2.8.2计算模型的分类准确率
2.8.3检查模型训练过程,识别潜在训练问题
2.8.4加入校验或测试,更好评价模型效果
2.8.5加入正则化项,避免模型过拟合
2.8.6可视化分析
2.8.7作业
2.9“手写数字识别”之恢复训练
2.9.1概述
2.9.2恢复训练
2.10完整掌握深度学习建模小结
第3章计算机视觉
3.1卷积神经网络基础
3.1.1概述
3.1.2卷积神经网络
3.1.3作业
3.2卷积的四种操作
3.2.1概述
3.2.2池化
3.2.3ReLU激活函数
3.2.4批归一化
3.2.5丢弃法
3.2.6作业
3.3图像分类
3.3.1概述
3.3.2LeNet
3.3.3AlexNet
3.3.4VGG
3.3.5GoogLeNet
3.3.6ResNet
3.3.7小结
3.3.8作业
第4章目标检测YOLOv3
4.1目标检测基础概念
4.1.1概述
4.1.2目标检测发展历程
4.1.3目标检测基础概念
4.2目标检测数据处理
4.3目标检测YOLOv3
4.3.1YOLOv3模型设计思想
4.3.2产生候选区域
4.3.3对候选区域进行标注
4.3.4图形特征提取
4.3.5计算预测框位置和类别
4.3.6定义损失函数
4.3.7多尺度检测
4.3.8网络训练
4.3.9模型预测
4.3.10模型效果及可视化展示
4.4AI识虫比赛
4.4.1AI识虫比赛
4.4.2实现参考
4.4.3更多思路参考
第5章自然语言处理
5.1自然语言处理
5.1.1概述
5.1.2自然语言处理的发展历程
5.1.3自然语言处理技术面临的挑战
5.1.4自然语言处理的常见任务
5.1.5使用深度学习解决自然语言处理任务的套路
5.1.6使用飞桨探索自然语言处理
5.1.7作业
5.2词向量Word Embedding
5.2.1概述
5.2.2如何将词转换为向量
5.2.3如何让向量具有语义信息
5.3使用飞桨实现Skipgram
5.3.1概述
5.3.2数据处理
5.3.3网络定义
5.3.4网络训练
5.3.5词向量的有趣使用
5.3.6作业
第6章情感分析
6.1自然语言情感分析
6.1.1概述
6.1.2使用深度神经网络完成情感分析任务
6.1.3作业
6.2循环神经网络RNN和长短时记忆网络LSTM
6.2.1RNN和LSTM网络的设计思考
6.2.2循环神经网络RNN
6.2.3长短时记忆网络LSTM
6.2.4作业
6.3使用LSTM完成情感分析任务
6.3.1概述
6.3.2使用飞桨实现基于LSTM的情感分析模型
6.4AI文本分类比赛
6.4.1中文新闻标题分类比赛
6.4.2更多思路参考
第7章推荐系统
7.1推荐系统介绍
7.1.1推荐系统的产生背景
7.1.2推荐系统的基本概念
7.1.3思考有哪些信息可以用于推荐
7.1.4使用飞桨探索电影推荐
7.1.5作业
7.2数据处理与读取
7.2.1数据集回顾
7.2.2数据处理流程
7.2.3构建数据读取器
7.2.4小结
7.3电影推荐模型设计
7.3.1模型设计介绍
7.3.2Embedding介绍
7.3.3电影特征提取网络
7.3.4相似度计算
7.3.5小结
7.4模型训练与特征保存
7.4.1模型训练
7.4.2保存特征
7.4.3作业
7.5电影推荐
7.5.1根据用户喜好推荐电影
7.5.2几点思考收获
7.5.3在工业实践中的推荐系统
7.5.4作业
第8章精通深度学习的高级内容
8.1精通深度学习的高级内容
8.1.1为什么要精通深度学习的高级内容
8.1.2高级内容包含哪些武器
8.1.3飞桨开源组件使用场景概览
8.2模型资源之一: 预训练模型应用工具PaddleHub
8.2.1概述
8.2.2预训练模型的应用背景
8.2.3快速使用PaddleHub
8.2.4PaddleHub提供的预训练模型
8.2.5使用自己的数据Finetune PaddleHub预训练模型
8.2.6PaddleHub创意赛
8.2.7往届优秀学员作品展示
8.3模型资源之二: 各领域的开发套件
8.3.1概述
8.3.2PaddleSeg用于解决图像分割的问题
8.3.3PaddleSeg是开发套件,不仅是模型库
8.3.4PaddleSeg实战
8.3.5作业
8.3.6相关参考
8.3.7往届优秀学员作品展示
8.4模型资源之三: 模型库介绍
8.4.1概述
8.4.2从模型库中筛选自己需要的模型
8.4.3使用飞桨模型库或在其基础上二次研发的优势
8.4.4一个案例掌握Models的使用方法
8.4.5相关参考
8.5设计思想、静态图、动态图和二次研发
8.5.1飞桨设计思想的核心概念
8.5.2飞桨声明式编程(静态图)与命令式编程(动态图)
8.5.3飞桨二次研发
8.6工业部署
8.6.1概述
8.6.2飞桨模型部署组件介绍
8.6.3飞桨原生推理库Paddle Inference
8.6.4飞桨服务化部署框架Paddle Serving
8.6.5飞桨轻量化推理引擎Paddle Lite
8.6.6飞桨模型压缩工具PaddleSlim
8.6.7往届优秀学员作品展示
8.7飞桨全流程开发工具PaddleX
8.7.1飞桨全流程开发工具PaddleX
8.7.2PaddleX图形化开发界面
8.7.3PaddleX 快速使用方法
8.7.4PaddleX客户端使用方法
8.7.5往届优秀学员作品展示
8.8应用启发: 行业应用与项目案例
8.8.1人工智能在中国的发展和落地概况
8.8.2传统行业有AI应用空间吗
8.8.3项目案例: 飞桨助力国网山东进行输电通道可视化巡检
8.8.4作业
8.8.5往届优秀学员作品展示
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价