作者简介 H.S.M.考克斯特(Harold Scott MacDonald Coxeter),英国出生的加拿大数学家,他被认为是20世纪伟大的几何学家之一。考克斯特于1931年在英国剑桥大学圣三一学院取得数学博士学位,1936年加入多伦多大学数学系,1980年退休,并一直保留着荣休教授直至1997年过世。考克斯特教授是加拿大皇家学会、英国皇家学会和美国人文与科学院院士,并获得过英国皇家学会的西尔维斯特奖章(Sylvester Medal)和加拿大优选荣誉勋章(Companion of Order of Canada)。他还曾担任加拿大数学会的主席和国际数学家大会的主席。考克斯特教授的研究成果为美国有名建筑师、设计师、发明家、思想家巴克敏斯特•富勒(Buckminster Fuller)的测地线穹顶概念提供了灵感。荷兰有名版画艺术家莫里茨•科内利斯•埃舍尔(M. C. Escher)的经典作品也是深受其影响。考克斯特教授一生著作很多,《几何导论》为其经典代表作品之一。
目录 Part Ⅰ 1 TRIANGLES 1.1 Euclid 1.2 Primitive concepts and axioms 1.3 Pons asinorum 1.4 The medians and the centroid 1.5 The incircle and the circumcircle 1.6 The Euler line and the orthocenter 1.7 The nine-point circle 1.8 Two extremum problems 1.9 Morley's theorem 2 REGULAR POLYGONS 2.1 Cyclotomy 2.2 Angle trisection 2.3 Isometry 2.4 Symmetry 2.5 Groups 2.6 The product of two reflections 2.7 The kaleidoscope 2.8 Star polygons 3 ISOMETRY IN THE EUCLIDEAN PLANE 3.1 Direct and opposite isometries 3.2 Translation 3.3 Glide reflection 3.4 Reflections and half-turns 3.5 Summary of results on isometries 3.6 Hjelmslev's theorem 3.7 Patterns on a strip 4 TWO-DIMENSIONAL CRYSTALLOGRAPHY 4.1 Lattices and their Dirichlet regions 4.2 The symmetry group of the general lattice 4.3 The art of M. C. Escher 4.4 Six patterns of bricks 4.5 The crystallographic restriction 4.6 Regular tessellations 4.7 Sylvester's problem of collinear points 5 SIMILARITY IN THE EUCLIDEAN PLANE 5.1 Dilatation 5.2 Centers of similitude 5.3 The nine-point center 5.4 The invariant point of a similarity 5.5 Direct similarity 5.6 Opposite similarity 6 CIRCLES AND SPHERES 6.1 Inversion in a circle 6.2 Orthogonal circles 6.3 Inversion of lines and circles 6.4 The inversive plane 6.5 Coaxal circles 6.6 The circle of Apollonius 6.7 Circle-preserving transformations 6.8 Inversion in a sphere 6.9 The elliptic plane 7 ISOMETRY AND SIMILARITY IN EUCLIDEAN SPACE 7.1 Direct and opposite isometries 7.2 The central inversion 7.3 Rotation and translation 7.4 The product of three reflections 7.5 Twist 7.6 Dilative rotation 7.7 Sphere-preserving transformations Part Ⅱ 8 COORDINATES 8.1 Cartesian coordinates 8.2 Polar coordinates 8.3 The circle 8.4 Conics 8.5 Tangent, arc length, and area 8.6 Hyperbolic functions 8.7 The equiangular spiral 8.8 Three dimensions 9 COMPLEX NUMBERS 9.1 Rational numbers 9.2 Real numbers 9.3 The Argand diagram 9.4 Modulus and amplitude 9.5 The formula eπi + 1 = 0 9.6 Roots of equations 9.7 Conformal transformations 10 THE FIVE PLATONIC SOLIDS 10.1 Pyramids, prisms, and antiprisms 10.2 Drawings and models 10.3 Euler's formula 10.4 Radii and angles 10.5 Reciprocal polyhedra 11 THE GOLDEN SECTION AND PHYLLOTAXIS 11.1 Extreme and mean ratio 11.2 De divina proportione 11.3 The golden spiral 11.4 The Fibonacci numbers 11.5 Phyllotaxis Part Ⅲ 12 ORDERED GEOMETRY 12.1 The extraction of two distinct geometries from Euclid 12.2 Intermediacy 12.3 Sylvester's problem of collinear points 12.4 Planes and hyperplanes 12.5 Continuity 12.6 Parallelism 13 AFFINE GEOMETRY 13.1 The axiom of parallelism and the \"Desargues\" axiom 13.2 Dilatations 13.3 Affinities 13.4 Equiaffinities 13.5 Two-dimensional lattices 13.6 Vectors and centroids 13.7 Barycentric coordinates 13.8 Affine space 13.9 Three-dimensional lattices 14 PROJECTIVE GEOMETRY 14.1 Axioms for the general projective plane 14.2 Projective coordinates 14.3 Desargues's theorem 14.4 Quadrangular and harmonic sets 14.5 Projectivities 14.6 Collineations and correlations 14.7 The conic 14.8 Projective space 14.9 Euclidean space 15 ABSOLUTE GEOMETRY 15.1 Congruence 15.2 Parallelism 15.3 Isometry 15.4 Finite groups of rotations 15.5 Finite groups of isometries 15.6 Geometrical crystallography 15.7 The polyhedral kaleidosc
以下为对购买帮助不大的评价