• Hive编程指南
21年品牌 40万+商家 超1.5亿件商品

Hive编程指南

全新正版 极速发货

52 7.5折 69 全新

库存2件

浙江嘉兴
认证卖家担保交易快速发货售后保障

作者(美)卡普廖洛//万普勒//卢森格林|译者:曹坤

出版社人民邮电

ISBN9787115333834

出版时间2013-12

装帧其他

开本其他

定价69元

货号2731349

上书时间2024-11-01

學源图书专营店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
导语摘要
 要把关系型数据库应用迁移到Hadoop上,你该何去何从?本书介绍了ApacheHive,它是基于Hadoop的数据仓库架构。通过本书,读者可以很快学会如何使用Hive的SQL方言——HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大型数据集。
卡普廖洛、万普勒、卢森格林编著的《Hive编程指南》以实际案例为主线,详细介绍如何在用户环境下安装和配置Hive,并对Hadoop和MapReduce的各项技术进行概要介绍,同时演示Hive在Hadoop生态系统中是如何工作的。在本书中,读者还可以看到众多的实际使用场景,包括企业如何使用Hive解决了涉及PB级数据的问题。

作者简介
JasonRutherglen,ThinkBigAnalytics公司软件架构师,对大数据、Hadoop、搜索和安全有专门的研究。
DeanWampler,ThinkBigAnalytics公司总顾问,对大数据问题以及Hadoop和机器学习有专门的研究。
EdwardCapriolo,Media6degrees公司系统管理员,他是Apache软件基金会成员,还是Hadoop—Hive项目成员。

目录
第1章 基础知识
  1.1 Hadoop和MapReduce综述
  1.2 Hadoop生态系统中的Hive
  1.2.1 Pig
  1.2.2 HBase
  1.2.3 Cascading、Crunch及其他
  1.3 Java和Hive:词频统计算法
  1.4 后续事情
第2章 基础操作
  2.1 安装预先配置好的虚拟机
  2.2 安装详细步骤
  2.2.1 装Java
  2.2.2 安装Hadoop
  2.2.3 本地模式、伪分布式模式和分布式模式
  2.2.4 测试Hadoop
  2.2.5 安装Hive
  2.3 Hive内部是什么
  2.4 启动Hive
  2.5 配置Hadoop环境
  2.5.1 本地模式配置
  2.5.2 分布式模式和伪分布式模式配置
  2.5.3 使用JDBC连接元数据
  2.6 Hive命令
  2.7 命令行界面
  2.7.1 CLI 选项
  2.7.2 变量和属性
  2.7.3 Hive中“一次使用”命令
  2.7.4 从文件中执行Hive查询
  2.7.5 hiverc文件
  2.7.6 使用Hive CLI的更多介绍
  2.7.7 查看操作命令历史
  2.7.8 执行shell命令
  2.7.9 在Hive内使用Hadoop的dfs命令
  2.7.10 Hive脚本中如何进行注释
  2.7.11 显示字段名称
第3章 数据类型和文件格式
  3.1 基本数据类型
  3.2 集合数据类型
  3.3 文本文件数据编码
  3.4 读时模式
第4章 HiveQL:数据定义
  4.1 Hive中的数据库
  4.2 修改数据库
  4.3 创建表
  4.3.1 管理表
  4.3.2 外部表
  4.4 分区表、管理表
  4.4.1 外部分区表
  4.4.2 自定义表的存储格式
  4.5 删除表
  4.6 修改表
  4.6.1 表重命名
  4.6.2 增加、修改和删除表分区
  4.6.3 修改列信息
  4.6.4 增加列
  4.6.5 删除或者替换列
  4.6.6 修改表属性
  4.6.7 修改存储属性
  4.6.8 众多的修改表语句
第5章 HiveQL:数据操作
  5.1 向管理表中装载数据
  5.2 通过查询语句向表中插入数据
  5.3 单个查询语句中创建表并加载数据
  5.4 导出数据
第6章 HiveQL:查询
  6.1 SELECT…FROM语句
  6.1.1 使用正则表达式来指定列
  6.1.2 使用列值进行计算
  6.1.3 算术运算符
  6.1.4 使用函数
  6.1.5 LIMIT语句
  6.1.6 列别名
  6.1.7 嵌套SELECT语句
  6.1.8 CASE…WHEN…THEN 句式
  6.1.9 什么情况下Hive可以避免进行MapReduce
  6.2 WHERE语句
  6.2.1 谓词操作符
  6.2.2 关于浮点数比较
  6.2.3 LIKE和RLIKE
  6.3 GROUP BY 语句
  6.4 JOIN语句
  6.4.1 INNER JOIN
  6.4.2 JOIN优化
  6.4.3 LEFT OUTER JOIN
  6.4.4 OUTER JOIN
  6.4.5 RIGHT OUTER JOIN
  6.4.6 FULL OUTER JOIN
  6.4.7 LEFT SEMI-JOIN
  6.4.8 笛卡尔积JOIN
  6.4.9 map-side JOIN
  6.5 ORDER BY和SORT BY
  6.6 含有SORT BY 的DISTRIBUTE BY
  6.7 CLUSTER BY
  6.8 类型转换
  6.9 抽样查询
  6.9.1 数据块抽样
  6.9.2 分桶表的输入裁剪
  6.10 UNION ALL
第7章 HiveQL:视图
  7.1 使用视图来降低查询复杂度
  7.2 使用视图来限制基于条件过滤的数据
  7.3 动态分区中的视图和map类型
  7.4 视图零零碎碎相关的事情
第8章 HiveQL:索引
  8.1 创建索引
  8.2 重建索引
  8.3 显示索引
  8.4 删除索引
  8.5 实现一个定制化的索引处理器
第9章 模式设计
  9.1 按天划分的表
  9.2 关于分区
  9.3 唯一键和标准化
  9.4 同一份数据多种处理
  9.5 对于每个表的分区
  9.6 分桶表数据存储
  9.7 为表增加列
  9.8 使用列存储表
  9.8.1 重复数据
  9.8.2 多列
  9.9 (几乎)总是使用压缩
第10章 调优
  10.1 使用EXPLAIN
  10.2 EXPLAIN EXTENDED
  10.3 限制调整
  10.4 JOIN优化
  10.5 本地模式
  10.6 并行执行
  10.7 严格模式
  10.8 调整mapper和reducer个数
  10.9 JVM重用
  10.10 索引
  10.11 动态分区调整
  10.12 推测执行
  10.13 单个MapReduce中多个GROUP BY
  10.14 虚拟列
第11章 其他文件格式和压缩方法
  11.1 确定安装编解码器
  11.2 选择一种压缩编/解码器
  11.3 开启中间压缩
  11.4 最终输出结果压缩
  11.5 sequence file存储格式
  11.6 使用压缩实践
  11.7 存档分区
  11.8 压缩:包扎
第12章 开发
  12.1 修改Log4J属性
  12.2 连接Java调试器到Hive
  12.3 从源码编译Hive
  12.3.1 执行Hive测试用例
  12.3.2 执行hook
  12.4 配置Hive和Eclipse
  12.5 Maven工程中使用Hive
  12.6 Hive中使用hive_test进行单元测试
  12.7 新增的插件开发工具箱(PDK)
第13章 函数
  13.1 发现和描述函数
  13.2 调用函数
  13.3 标准函数
  13.4 聚合函数
  13.5 表生成函数
  13.6 一个通过日期计算其星座的UDF
  13.7 UDF与GenericUDF
  13.8 不变函数
  13.9 用户自定义聚合函数
  13.10 用户自定义表生成函数
  13.10.1 可以产生多行数据的UDTF
  13.10.2 可以产生具有多个字段的单行数据的UDTF
  13.10.3 可以模拟复杂数据类型的UDTF
  13.11 在 UDF中访问分布式缓存
  13.12 以函数的方式使用注解
  13.12.1 定数性(deterministic)标注
  13.12.2 状态性(stateful)标注
  13.12.3 唯一性
  13.13 宏命令
第14章 Streaming
  14.1 恒等变换
  14.2 改变类型
  14.3 投影变换
  14.4 操作转换
  14.5 使用分布式内存
  14.6 由一行产生多行
  14.7 使用streaming进行聚合计算
  14.8 CLUSTER BY、DISTRIBUTE BY、SORT BY
  14.9 GenericMR Tools for Streaming to Java
  14.10 计算cogroup
第15章 自定义Hive文件和记录格式
  15.1 文件和记录格式
  15.2 阐明CREATE TABLE句式
  15.3 文件格式
  15.3.1 SequenceFile
  15.3.2 RCfile
  15.3.3 示例自定义输入格式:DualInputFormat
  15.4 记录格式:SerDe
  15.5 CSV和TSV SerDe
  15.6 ObjectInspector
  15.7 Thing Big Hive Reflection ObjectInspector
  15.8 XML UDF
  15.9 XPath相关的函数
  15.10 JSON SerDe
  15.11 Avro Hive SerDe
  15.11.1 使用表属性信息定义Avro Schema
  15.11.2 从指定URL中定义Schema
  15.11.3 进化的模式
  15.12 二进制输出
第16章 Hive的Thrift服务
  16.1 启动Thrift Server
  16.2 配置Groovy使用HiveServer
  16.3 连接到HiveServer
  16.4 获取集群状态信息
  16.5 结果集模式
  16.6 获取结果
  16.7 获取执行计划
  16.8 元数据存储方法
  16.9 管理HiveServer
  16.9.1 生产环境使用HiveServer
  16.9.2 清理
  16.10 Hive ThriftMetastore
  16.10.1 ThriftMetastore 配置
  16.10.2 客户端配置
第17章 存储处理程序和NoSQL
  17.1 Storage Handler Background
  17.2 HiveStorageHandler
  17.3 HBase
  17.4 Cassandra
  17.4.1 静态列映射(Static Column Mapping)
  17.4.2 为动态列转置列映射
  17.4.3 Cassandra SerDe Properties
  17.5 DynamoDB
第18章 安全
  18.1 和Hadoop安全功能相结合
  18.2 使用Hive进行验证
  18.3 Hive中的权限管理
  18.3.1 用户、组和角色
  18.3.2 Grant 和 Revoke权限
  18.4 分区级别的权限
  18.5 自动授权
第19章 锁
  19.1 Hive结合Zookeeper支持锁功能
  19.2 显式锁和独占锁
第20章 Hive和Oozie整合
  20.1 Oozie提供的多种动作(Action)
  20.2 一个只包含两个查询过程的工作流示例
  20.3 Oozie 网页控制台
  20.4 工作流中的变量
  20.5 获取输出
  20.6 获取输出到变量
第21章 Hive和亚马逊网络服务系统(AWS)
  21.1 为什么要弹性MapReduce
  21.2 实例
  21.3 开始前的注意事项
  21.4 管理自有EMR Hive集群
  21.5 EMR Hive上的Thrift Server服务
  21.6 EMR上的实例组
  21.7 配置EMR集群
  21.7.1 部署hive-site.xml文件
  21.7.2 部署.hiverc脚本
  21.7.3 建立一个内存密集型配置
  21.8 EMR上的持久层和元数据存储
  21.9 EMR集群上的HDFS和S
  21.10 在S3上部署资源、配置和辅助程序脚本
  21.11 S3上的日志
  21.12 现买现卖
  21.13 安全组
  21.14 EMR和EC2以及Apache Hive的比较
  21.15 包装
第22章 HCatalog
  22.1 介绍
  22.2 MapReduce
  22.2.1 读数据
  22.2.2 写数据
  22.3 命令行
  22.4 安全模型
  22.5 架构
第23章 案例研究
  23.1 m6d.com(Media6Degrees)
  23.1.1 M 6D的数据科学,使用Hive和R
  23.1.2 M6D UDF伪随机
  23.1.3 M6D如何管理多MapReduce集群间的Hive数据访问
  23.2 Outbrain
  23.2.1 站内线上身份识别
  23.2.2 计算复杂度
  23.2.3 会话化
  23.3 NASA喷气推进实验室
  23.3.1 区域气候模型评价系统
  23.3.2 我们的经验:为什么使用Hive
  23.3.3 解决这些问题我们所面临的挑战
  23.4 Photobucket
  23.4.1 Photobucket 公司的大数据应用情况
  23.4.2 Hive所使用的硬件资源信息
  23.4.3 Hive提供了什么
  23.4.4 Hive支持的用户有哪些
  23.5 SimpleReach
  23.6 Experiences and Needs from the Customer Trenches
  23.6.1 介绍
  23.6.2 Customer Trenches的用例
术语词汇表

内容摘要
  卡普廖洛、万普勒、卢森格林编著的《Hive编程指南》是一本ApacheHive的编程指南,旨在介绍如何使用Hive的SQL方法——HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大数据集合。
《Hive编程指南》通过大量的实例,首先介绍如何在用户环境下安装和配置Hive,并对Hadoop和MapReduce进行详尽阐述,最终演示Hive如何在Hadoop生态系统进行工作。
《Hive编程指南》适合对大数据感兴趣的爱好者以及正在使用Hadoop系统的数据库管理员阅读使用。

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP