内容提要 域是有理数集合、实数集合、复数集合的抽象模型,因此在整个数学科学中处于基础地位。Galois是早提出有限域观点的人,他对于抽象域理论的诞生至关重要。 本书把抽象域论一分为二,首先讲代数扩张及其在代数域论上的应用,其次介绍扩张及其在代数函数论及代数几何上的应用,中间还插入经典的Galois理论,使读者对于实际背景有比较清楚的认识。 目录 Preface Notes to the Reader List of Symbols I Galois Theory 1 Field Extensions 2 Automorphisms 3 Normal Extensions 4 Separable and Inseparable Extensions 5 The Fundamental Theorem of Galois Theory II Some Galois Extensions 6 Finite Fields 7 Cyclotomic Extensions 8 Norms and Traces 9 Cyclic Extensions 10 Hilbert Theorem 90 and Group Cohomology 11 Kummer Extensions III Applications of Galois Theory 12 Discriminants 13 Polynomials of Degree 3 and 4 14 The Transcendence of and e 15 Ruler and Compass Consturctions 16 Solvability by RadicalsⅣ Infinite Algebraic ExtensionsⅤ Transcendental ExtensionsAppendix A Ring TheoryAppendix B Set TheoryAppendix C Group TheoryAppendix D Vector SpacesAppendix E TopologyReferencesIndex 作者介绍
以下为对购买帮助不大的评价