基本信息 书名:线性偏微分算子分析 第3卷 定价:79.00元 作者:(瑞典)Lars H?rmander(L.赫尔曼德尔) 出版社:世界图书出版公司 出版日期:2016-12-01 ISBN:9787519209285 字数:432000 页码:525 版次:1 装帧:平装 开本:16开 商品重量: 编辑推荐 《线性偏微分算子分析(第3卷)(英文版)》由世界图书出版公司北京公司出版。 内容提要 本书作者是世界公认的数学分析领头学者,这套4卷集的经典名著以广义函数论为框架,论述了与偏微分方程理论有关的经典分析和现代分析的许多精华内容。第3卷目次:二阶椭圆算子;伪微分算子;无界紧流形上的椭圆算子;椭圆微微算子的边界值问题;辛几何;亚椭圆算子的类别;严格双曲柯西问题;二阶算子的混合狄利克雷(Dirichlet)-柯西问题。 目录 IntroductionChapter XVIISecond Order Elliptic OperatorsSummary N17.1 Interior Regularity and Local Estence Theorems17.2 UniqueContinuation Tbeorems17.3 The Dirichlet Problem17.4 The Hadamard Parametrix Construction17.5 Asymptotic Properties ofEigenvalues and EigenfunctionsNotesChapter XVIIIPseudo—Differential OperatorsSummary18.1TheBasicCalculus18.2ConormaIDistributions18.3 TotallyCharacteristic Operators18.4 Gauss Transforms Revisited18.5TheWeylCalculus18.6 Estimates ofPseudo—DifferentialOperatorsNotesChapter XIXElliptic Operators on a Compact Manifold WithoutBoundarySummary19.1AbstractFredholmTheory19.2 Thelndex ofElliptic Operators19.3 Tbelndex TheoreminRl19.4 The Lefschetz Formula19.5 Miscellaneous Remarks on EllipticityNotesChapter XXBoundary Problems for Elliptic Differential OperatorsSummary20.1 Elliptic Boundary Problems20.2 Preliminaries on Ordinary Differential Operators20.3 Thelndex for Elliptic Boundary Problems20.4 Non—Elliptic Boundary ProblemsNotesChapter XXI.Symplectic GeometrySummary21.1 The Basic Structure21.2 Submanifolds ofa Sympletic Manifold21.3 Normal Forms ofFunctions21.4 Folds and Glancing Hypersurfaces21.5 Symplectic Equivalence ofQuadratic Forms21.6 The Lagrangian GrassmannianNotes 'Chapter XXIISome Classes of(Micro—)hypoelliptic OperatorsSummary22.1 Operators with Pseudo—Differential Parametrix22.2 Generalized Kolmogorov Equations22.3Melin'slnequality22.4 Hypoellipticity with Loss of One DerivativeNotesChapter XXIIIThe Strictly hyperbolic Cauchy ProblemSummary23.1 First OrderOperators23.2 Operators ofHigher Order23.3 Necessary Conditions for Correctness of the CauchyProblem23.4 Hyperbolic Operators of PrincipaITypeNotesChapter XXIVThe Mixed Dirichlet—Cauchy Problem for Second OrderOperatorsSummary24.1 Energy Estimates and Estence Theorems in the Hyperbolic Case24.2 Singularities in the Elliptic and Hyperbolic Regions24.3 The Generalized Bicharacteristic Flow24.4 The Diffractive Case24.5 The General Propagation ofSingularities24.6 Operators Microlocally ofTricomi's Type24.7 Operators Depending on ParametersNotesAppendix BSome Spaces of DistributionsB.1 Distributions in R and in an Open ManifoldB.2 Distributions in a Half Space and in a Manifold with Boundary NAppendix CSome Tools from Differential GeometryC.1 The Frobenius Theorem and FoliationsC.2 A Singular Differential EquationC.3 Clean Intersections and Maps of Constant RankC.4 Folds and InvolutionsC.5 Geodesic Normal CoordinatesC.6 The Morse Lemma with ParametersNotesBibliographyIndexIndex of Notation 作者介绍 赫尔曼德尔是米塔-列夫勒所奠定的瑞典分析学派的继承者,他的工作成果主要在现代线性偏微分方程理论方面。他是伪微分算子和傅立叶积分算子的奠基人之一。1959年,他在偏微分方程一般理论上取得了突破性成果。1962年,4届国际数学家大会在瑞典召开,赫尔曼德尔获得了被誉为“数学界诺贝尔奖”的菲尔兹奖。 序言
以下为对购买帮助不大的评价