基本信息 书名:量子混沌理论 第3版 定价:99.00元 作者:(德)Fritz Haake(F. 哈克) 出版社:世界图书出版公司 出版日期:2015-08-01 ISBN:9787510094668 字数: 页码:573 版次:1 装帧:平装 开本:16开 商品重量: 编辑推荐 《量子混沌理论(第3版)》凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。 内容提要 本书是一部研究量子混沌的经典教程,随着近年来这个新兴领域的快速发展,本书中近发展成果包括其中,使得这本书内容更加完善。书中详细讲述了非线性动力系统的量子方面、区分规则和不规则运动的量子标准、反酉对称(一般化时间反演)、随机矩阵理论、并且详细讲述了耗散系统的量子力学。每章都有问题精选,可以更好地帮助读者检验所学到的新方法和新理论。除了大量的更新和修订;在这新的版本中全面展开讲述了谱波动知识;插入一章讲述经典哈密顿混沌,用了大量的篇幅展示了半经典理论的发展,自称体系。目次:导引;时间反演和酉对称;能级排斥;随机矩阵理论;能级聚簇;能级动态;量子局部化;耗散系统;经典哈密顿混沌;经典轨道中的半经典角色;随机矩阵理论的超分析。读者对象:物理专业的研究生、教师和相关的科研人员。 目录 1 Introduction References 2 Time Reversal and Unitary Symmetries 2. I Autonomous Classical Flows 2.2 Spinless Quanta 2.3 Spin-1/2 Quanta 2.4 Hamiltonians Without T Invariance 2.5 T Invariant Hamiltonians, T2=1 2.6 Kramers'Degeneracy 2.7 Kramers'Degeneracy and Geometric Symmetries 2.8 Kramers'Degeneracy Without Geometric Symmetries 2.9 Nonconventional Time Reversal 2. l0 Stroboscopic Maps for Periodically Driven Systems 2.11 Time Reversal for Maps 2.12 Canonical Transformations for Floquet Operators 2.13 Beyond Dyson's Threefold Way 2.13.1 Normal-Superconducting Hybrid Structures 2.13.2 Systems with Chiral Symmetry 2.14 Problems References Level Repulsion 3. 1 Preliminaries 3.2 Symmetric Versus Nonsymmetric H or F 3.3 Kramers' Degeneracy 3.4 Universality Classes of Level Repulsion 3.5 Nonstandard Symmetry Classes 3.6 Experimental Observation of Level Repulsion 3.7 Problems References 4 Random-Matrix Theory 4.1 Preliminaries 4.2 Gaussian Ensembles of Hermitian Matrices 4.3 Eigenvalue Distributions for Dyson's Ensembles 4.4 Eigenvalue Distributions for Nonstandard Symmetry Cla 4.5 Level Spacing Distributions 4.6 Invariance of the Integration Measure 4.7 Average Level Density 4.8 Unfolding Spectra 4.9 Eigenvector Distributions 4.9.1 Single-Vector Density 4.9.2 Joint Density of Eigenvectors 4.10 Ergodicity of the Level Density 4.11 Dyson's Circular Ensembles 4.12 Asymptotic Level Spacing Distributions 4.13 Determinants as Gaussian Grassmann Integrals 4.14 Two-Point Correlations of the Level Density 4.14.1 Two-Point Correlator and Form Factor 4.14.2 Form Factor for the Poissonian Ensemble 4.14.3 Form Factor for the CUE 4.14.4 Form Factor for the COE 4.14.5 Form Factor for the CSE 4.15 Newton's Relations 4.15.1 Traces Versus Secular Coefficients 4.15.2 Solving Newton's Relations 4.16 Selfinversiveness and Riemann-Siegel Lookalike 4.17 Higher Correlations of the Level Density 4.17.1 Correlation and Cumulant Functions 4.17.2 Ergodicity of the Two-Point Correlator 4.17.3 Ergodicity of the Form Factor 4.17.4 Joint Density of Traces of Large CUE Matrices 4.18 Correlations of Secular Coefficients 4.19 Fidelity of Kicked Tops to Random-Matrix Theory 4.20 Problems References $ Level Clustering 5.1 Preliminaries 5.2 Invariant Tori of ClassicallyIntegrable Systems 5.3 Einstein-Brillouin-Keller Appromation 5.4 Level Crossings for Integrable Systems 5.5 Poissonian Level Sequences 5.6 Superposition of Independent Spectra 5.7 Periodic Orbits and the Semiclassical Density of Levels 5.8 Level Density Fluctuations for Integrable Systems 5.9 Exponential Spacing Distribution for Integrable Systems 5.10 Equivalence of Different Unfoldings 5.11 Problems References Level Dynamics 6.1 Preliminaries 6.2 Fictitious Particles (Pechukas-Yukawa Gas) 6.3 Conservation Laws 6.4 Intermultiplet Crossings 6.5 Level Dynamics for Classically Integrable Dynamics 6.6 Two-Body Collisions 6.7 Ergodicity of Level Dynamics and Universality of Spectral Fluctuations 6.7.1 Ergodicity 6.7.2 Collision Time 6.7.3 Universality 6.8 Equilibrium Statistics 6.9 Random-Matrix Theory as Equilibrium Statistical Mechanics 6.9.1 General Strategy 6.9.2 A Typical Coordinate Integral 6.9.3 Influence of a Typical Constant of the Motion 6.9.4 The General Coordinate Integral 6.9.5 Concluding Remarks 6.10 Dynamics of Rescaled Energy Levels 6.11 Level Curvature Statistics 6.12 Level Velocity Statistics 6.13 Dyson's Brownian-Motion Model 6.14 Local and Global Equilibrium in Spectra 6.15 Problems References Quantum Localization 7.1 Preliminaries 7.2 Localization in Anderson's Hopping Model 7.3 The Kicked Rotator as a Variant of Anderson's Model 7.4 Lloyd's Model 7.5 The Classical Diffusion Constant as the Quantum Localization Length 7.6 Absence of Localization for the Kicked Top 7.7 The Rotator as a Limiting Case of the Top 7.8 Problems References …… 8 Dissipative Svstems 9 Classical Hamiltonian Chaos 10 Semiclassical Roles for Classical Orbits 作者介绍 Fritz Haake(F. 哈克,德国) 是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。 序言
以下为对购买帮助不大的评价