基本信息 书名:概率论和随机过程 第2版 定价:55.00元 作者:(美)凯罗勒夫 出版社:世界图书出版公司 出版日期:2012-06-01 ISBN:9787510044106 字数: 页码:353 版次:1 装帧:平装 开本:12开 商品重量: 编辑推荐 《概率论和随机过程(第2版)》是以作者在Princeton大学和Maryland大学的讲义为蓝本扩充而成,书中的内容正好可作为《概率论和随机过程》课程一学年的独立教材。这对于高年级的本科生、研究生和想要了解本科目基础知识的科研人员都是相当有用的。全书文笔流畅,其中的概念和相关的结果都是生动丰富,并具有启发性。每章末都包含难易不等的练习题。此书已经被作者用作Princeton大学和Maryland高年级本科生和研究生学习该科目的一学期的教程。目次:( 部分)概率论:随机变量及其分布;独立试验序列;勒贝格积分和数学期望;条件概率和期望;具有有限数状态的马尔科夫链;大数定理;测度的弱收敛;特征函数;极限定理;几个有趣的问题;(第二部分)随机过程:基本概念;条件期望和鞅;有限状态空间的马尔科夫链;广泛意义上的平稳随机过程;严格平稳随机过程;广义随机过程;布朗运动;马尔科夫过程和马尔科夫族;随机积分和Ito公式;随机微分方程;Gibbs随机域。 内容提要 《概率论和随机过程(第2版)》是以作者在Princeton大学和Maryland大学的讲义为蓝本扩充而成,书中的内容正好可作为《概率论和随机过程》课程一学年的独立教材。这对于高年级的本科生、研究生和想要了解本科目基础知识的科研人员都是相当有用的。 目录 Part Ⅰ Probability Theory1 Random Variables and Their Distributions1.1 Spaces of Elementary Outcomes, a-Algebras, and Measures1.2 Expectation and Variance of Random Variables on a DiscreteProbability Space1.3 Probability of a Union of Events1.4 Equivalent Formulations of a-Additivity, Borel a-Algebras andMeasurability1.5 Distribution Functions and Densities1.6 Problems2 Sequences of Independent Trials2.1 Law of Large Numbers and Applications2.2 de Moivre-Laplace Limit Theorem and Applications2.3 Poisson Limit Theorem.2.4 Problems3 Lebesgue Integral and Mathematical Expectatio3.1 Definition of the Lebesgue Integral3.2 Induced Measures and Distribution Functions3.3 Types of Measures and Distribution Functions3.4 Remarks on the Construction of the Lebesgue Measure3.5 Convergence of Functions, Their Integrals, and the FubiniTheorem3.6 Signed Measures and the R,adon-Nikodym Theorem3.7 Lp Spaces3.8 Monte Carlo Method3.9 Problems4 Conditional Probabilities and Independence4.1 Conditional Probabilities4.2 Independence of Events, Algebras, and Random Variables4.34.4 Problems5 Markov Chains with a Finite Number of States5.1 Stochastic Matrices5.2 Markov Chains5.3 Ergodic and Non-Ergodic Markov Chains5.4 Law of Large Numbers and the Entropy of a Markov Chai5.5 Products of Positive Matrices5.6 General Markov Chains and the Doeblin Conditio5.7 Problems6 Random Walks on the Lattice Zd6.1 Recurrent and Transient R,andom Walks6.2 Random Walk on Z and the Refiection Principle6.3 Arcsine Law6.4 Gambler's Ruin Problem6.5 Problems7 Laws of Larze Numbers7.1 Definitions, the Borel-Cantelli Lemmas, and the KolmogorovInequality7.2 Kolmogorov Theorems on the Strong Law of Large Numbers7.3 Problems8 Weak Converaence of Measures8.1 Defnition of Weak Convergence8.2 Weak Convergence and Distribution Functions8.3 Weak Compactness, Tightness, and the Prokhorov Theorem8.4 Problems9 Characteristic Functions9.1 Definition and Basic Properties9.2 Characteristic Functions and Weak Convergence9.3 Gaussian Random Vectors9.4 Problems10 Limit Theorems10.1 Central Limit Theorem, the Lindeberg Conditio10.2 Local Limit Theorem10.3 Central Limit Theorem and Renormalization GrOUD Theorv10.4 Probabilities of Large Deviations……Part Ⅱ Random ProcessesIndex 作者介绍 作者:(美)凯罗勒夫 序言
以下为对购买帮助不大的评价