基本信息 书名:不等式 定价:59.00元 作者:(英)加林 出版社:世界图书出版公司 出版日期:2012-03-01 ISBN:9787510042829 字数: 页码:335 版次:1 装帧:平装 开本:12开 商品重量: 编辑推荐 《不等式》旨在介绍大量运用于线性分析中的不等式,并且详细介绍它们的具体应用。《不等式》以柯西不等式开头,grothendieck不等式结束,中间用许多不等式串成一个完整的篇幅,如,loomiswhitney不等式、 值不等式、hardy和hilbert不等式、超收缩和拉格朗日索伯列夫不等、beckner以及等等。这些不等式可以用来研究函数空间的性质,它们之间的线性算子,以及和算子。《不等式》拥有许多完整和标准的结果,提供了许多应用,如勒贝格分解定理和勒贝格密度定理、希尔伯特变换和其他奇异积分算子、鞅收敛定理、特征值分布、lidskii积公式、mercer定理和littlewood 4/3定理。 内容提要 《不等式》内容简介:The first intention of thiook, then, is to establish fundamental inequalities in this area. But more importantly, its purpose is to put them in context, and to show how useful they are. Although the book is very largely self—contained, it should therefore principally be of interest to analysts, and to those who use analysis seriously。 目录 Introductio1 Measure and integral1.1 Measure1.2 Measurable functions1.3 Integratio1.4 Notes and remarks2 The Cauchy-Schwarz inequality2.1 Cauchy's inequality2.2 Inner-product spaces2.3 The Cauchy-Schwarz inequality2.4 Notes and remarks3 The AM-GM inequality3.1 The AM-GM inequality3.2 Applications3.3 Notes and remarks4 Convety and Jensen's inequality4.1 Convex sets and convex functions4.2 Convex functions on an interval4.3 Directional derivatives and sublinear functionals4.4 The Hahn-Banach theorem4.5 Normed spaces, Banach spaces and Hilbert space4.6 The Hahn-Banach theorem for normed spaces4.7 Barycentres and weak integrals4.8 Notes and remarks5 The Lp spaces5.1 Lp spaces, and Minkowski's inequality5.2 The Lebesgue decomposition theorem5.3 The reverse Minkowski inequality5.4 HSlder's inequality5.5 The inequalities of Liapounov and Littlewood5.6 Duality5.7 The Loomis-Whitney inequali'ty5.8 A Sobolev inequality5.9 Schur's theorem and Schur's test5.10 Hilbert's absolute inequality5.11 Notes and remarks6 Banach function spaces6.1 Banach function spaces6.2 Function space duality6.3 Orlicz space6.4 Notes and remarks7 Rearrangements7.1 Decreasing rearrangements7.2 Rearrangement-invariant Banach function spaces7.3 Muirhead's mamal functio7.4 Majorizatio7.5 Calder6n's interpolation theorem and its converse7.6 Symmetric Banach sequence spaces7.7 The method of transference7.8 Finite doubly stochastic matrices7.9 Schur convety7.10 Notes and remarks Mamal inequalities8.1 The Hardy-Riesz inequality8.2 The Hardy-Riesz inequality8.3 Related inequalities8.4 Strong type and weak type8.5 Riesz weak type8.6 Hardy, Littlewood, and a batsman's averages8.7 Riesz's sunrise lemma8.8 Differentiation almost everywhere8.9 Mamal operators in higher dimensions8.10 The Lebesgue density theorem8.11 Convolution kernels8.12 Hedberg's inequality8.13 Martingales8.14 Doob's inequality8.15 The martingale convergence theorem8.16 Notes and remarks9 Complex interpolatio9.1 Hadamard's three lines inequality9.2 Compatible couples and intermediate spaces9.3 The Riesz-Thorin interpolation theorem9.4 Young's inequality9.5 The Hausdorff-Young inequality9.6 Fourier type9.7 The generalized Clarkson inequalities9.8 Uniform convety9.9 Notes and remarks10 Real interpolatio10.1 The Marcinkiewicz interpolation theorem: I10.2 Lorentz spaces10.3 Hardy's inequality10.4 The scale of Lorentz spaces10.5 The Marcinkiewicz interpolation theorem: II10.6 Notes and remarks11 The Hilbert transform, and Hilbert's inequalities11.1 The conjugate Poisson kernel11.2 The Hilbert transform o11.3 The Hilbert transform o11.4 Hilbert's inequality for sequences11.5 The Hilbert transform on T11.6 Multipliers11.7 Singular integral operators11.8 Singular integral operators o11.9 Notes and remarks12 Khintchine's inequality12.1 The contraction principle12.2 The reflection principle, and Lavy's inequalities12.3 Khintchine's inequality12.4 The law of the iterated logarithm12.5 Strongly embedded subspaces12.6 Stable random variables12.7 Sub-Gaussian random variables12.8 Kahane's theorem and Kahane's inequality12.9 Notes and remarks13 Hypercontractive and logarithmic Sobolev inequalities13.1 Bonami's inequality13.2 Kahane's inequality revisited13.3 The theorem of Lataa and Oleszkiewicz13.4 The logarithmic Sobolev inequality on Dd13.5 Gaussian measure and the Hermite polynomials13.6 The central limit theorem13.7 The Gaussian hypercontractive inequality13.8 Correlated Gaussian random variables13.9 The Gaussian logarithmic Sobolev inequality13.10 The logarithmic Sobolev inequality in higher dimensions13.11 Beckner's inequality13.12 The Babenko-Beckner inequality13.13 Notes and remarks14 Hadamard's inequality14.1 Hadamard's inequality14.2 Hadamard numbers14.3 Error-correcting codes14.4 Note and remark15 Hilbert space operator inequalities15.1 Jordan normal form15.2 Riesz operators15.3 Related operators15.4 Compact operators15.5 Positive compact operators15.6 Compact operatoretween Hilbert spaces15.7 Singular numbers, and the Rayleigh-Ritinimax formula15.8 Weyl's inequality and Horn's inequality15.9 Ky Fan's inequality15.10 Operator ideals15.11 The Hilbert-Schmidt class15.12 The trace class15.13 Lidskii's trace formula15.14 Operator ideal duality15.15 Notes and remarks16 Summing operators16.1 Unconditional convergence16.2 Absolutely summing operators16.3 (p, q)-summing operators16.4 Examples of p-summing operators16.5 (p, 2)-summing operatoretween Hilbert spaces16.6 Positive operators o16.7 Mercer's theorem16.8 p-summing operatoretween Hilbert spaces16.9 Pietsch's domination theorem16.10 Pietsch's factorization theorem16.11 p-summing operatoretween Hilbert spaces16.12 The Dvoretzky-Rogers theorem16.13 Operators that factor through a Hilbert space16.14 Notes and remarks17 Appromation numbers and eigenvalues17.1 The appromation, Gelfand and Weyl numbers17.2 Subadditive and submultiplicative properties17.3 Pietsch's inequality17.4 Eigenvalues of p-summing and (p, 2)-summingendomorphisms17.5 Notes and remarks18 Grothendieck's inequality, type and cotype18.1 Littlewood's 4/3 inequality18.2 Grothendieck's inequality18.3 Grothendieck's theorem18.4 Another proof, using Paley's inequality18.5 The little Grothendieck theorem18.6 Type and cotype18.7 Gaussian type and cotype18.8 Type and cotype of LP spaces18.9 The little Grothendieck theorem revisited18.10 More on cotype18.11 Notes and remarksReferencesIndex of inequalitiesIndex 作者介绍 作者:(英)加林 序言
以下为对购买帮助不大的评价