现代数学物理教程
¥
56.54
5.7折
¥
99
九五品
仅1件
作者(澳)斯泽克雷斯 著
出版社世界图书出版公司
ISBN9787510035098
出版时间2011-06
版次1
装帧平装
开本16开
纸张胶版纸
页数600页
定价99元
上书时间2024-08-01
商品详情
- 品相描述:九五品
- 商品描述
-
基本信息
书名:现代数学物理教程
定价:99.00元
作者:(澳)斯泽克雷斯 著
出版社:世界图书出版公司
出版日期:2011-06-01
ISBN:9787510035098
字数:
页码:600
版次:1
装帧:平装
开本:16开
商品重量:
编辑推荐
内容提要
本书是一部学习数学物理入门书籍,也是一部教程,让读者在物理的背景下建立现代数学概念,重点强调微分几何。写作风格上保持了作者一贯的特点,清晰,透彻,引人入胜。大量的练习和例子是本书的一大亮点,扩展索引对初学者也是十分有用。内容涵盖了张量代数,微分几何,拓扑,李群和李代数,分布理论,基础分析和希尔伯特空间。目次:几何与结构;群;向量空间;线性算子和矩阵;内积空间;代数;张量;外代数;狭义相对论;拓扑学;测度论和积分;分布;希尔伯特空间;量子力学;微分几何;微分形式;流形上的积分;联络和曲率;李群和李代数。 读者对象:数学、物理专业的本科生,研究生和相关的科研人员。
目录
acknowledgementsets and structures 1.ets and logic 1.2 subsets, unions and intersections of sets 1.3 cartesian products and relations 1.4 mappings 1.5 infinite sets 1.6 structures 1.7 category theory2 groups 2.1 elements of group theory 2.2 transformation and permutation groups 2.3 matrix groups 2.4 homomorphisms and isomorphisms 2.5 normal subgroups and factor groups 2.6 group actions 2.7 symmetry groups3 vector spaces 3.1 rings and fields 3.2 vector spaces 3.3 vector space homomorphisms 3.4 vector subspaces and quotient spaces 3.5 bases ofavector space 3.6 summation convention and transformation of bases 3.7 dual spaces4 linear operators and matrices 4.1 eigenspaces and characteristic equations 4.2 jordan canonical form 4.3 linear ordinary differential equations 4.4 introduction to group representation theory5 inner product spaces 5.1 real inner product spaces 5.2 complex inner product spaces 5.3 representations of finite groups6 algebras 6.1 algebras and ideals 6.2 complex numbers and complex structures 6.3 quaternions and clifford algebras 6.4 grassmann algebras 6.5 lie algebras and lie groups7 tensors 7.1 free vector spaces and tensor spaces 7.2 multilinear maps and tensors 7.3 basis representation of tensors 7.4 operations on tensors8 exterior algebra 8.1 r-vectors and r-forms 8.2 basis representation of r-vectors 8.3 exterior product 8.4 interior product 8.5 oriented vector spaces 8.6 the hodge dual9 special relativity 9.1 minkowski space-time 9.2 relativistic kinematics 9.3 particle dynamics 9.4 electrodynamics 9.5 conservation laws and energy-stress tensors10 topology 10.1 euclidean topology 10.2 general topological spaces 10.3 metric spaces 10.4 induced topologies 10.5 hausdorff spaces 10.6 compact spaces 10.7 connected spaces 10.8 topological groups 10.9 topological vector spaces11 measure theory and integratio 11.1 measurable spaces and functions 11.2 measure spaces 11.3 lebesgue integratio12 distributions 12.1 test functions and distributions 12.2 operations on distributions 12.3 fourier transforms 12.4 green's functions13 hilbert spaces 13.1 definitions and examples 13.2 expansion theorems 13.3 linear functionals 13.4 bounded linear operators 13.5 spectral theory 13.6 unbounded operators14 quantum mechanics 14.1 basic concepts 14.2 quantum dynamics 14.3 symmetry transformations 14.4 quantum statistical mechanics15 differential geometry 15.1 differentiable manifolds 15.2 differentiable maps and curves 15.3 tangent, cotangent and tensor spaces 15.4 tangent map and submanifolds 15.5 commutators, flows and lie derivatives 15.6 distributions and frobenius theorem16 differentiable forms 16.1 differential forms and exterior derivative 16.2 properties of exterior derivative 16.3 frobenius theorem: dual form 16.4 thermodynamics 16.5 classical mechanics17 integration on manifolds 17.1 partitions of unity 17.2 integration of n-forms 17.3 stokes' theorem 17.4 homology and cohomology 17.5 the poincare lemma18 connections and curvature 18.1 linear connections and geodesics 18.2 covariant derivative of tensor fields 18.3 curvature and torsio 18.4 pseudo-riemannian manifolds 18.5 equation of geodesic deviatio 18.6 the riemann tensor and its symmetries 18.7 caftan formalism 18.8 general relativity 18.9 cosmology 18.10 variation principles in space-time19 lie groups and lie algebras 19.1 lie groups 19.2 the exponential map 19.3 lie subgroups 19.4 lie groups of transformations 19.5 groups of isometricsbibliographyindex
作者介绍
序言
— 没有更多了 —
以下为对购买帮助不大的评价