基本信息 书名:微分几何基础 定价:65.00元 作者:(美)朗 著 出版社:世界图书出版公司 出版日期:2010-01-01 ISBN:9787510005404 字数: 页码:535 版次:1 装帧:平装 开本:16开 商品重量: 编辑推荐 《微分几何基础(英文版)》是由世界图书出版公司出版的。 内容提要 本书介绍了微分拓扑、微分几何以及微分方程的基本概念。本书的基本思想源于作者早期的《微分和黎曼流形》,但重点却从流形的一般理论转移到微分几何,增加了不少新的章节。这些新的知识为Banach和Hilbert空间上的无限维流形做准备,但一点都不觉得多余,而优美的证明也让读者受益不浅。在有限维的例子中,讨论了高维微分形式,继而介绍了Stokes定理和一些在微分和黎曼情形下的应用。给出了Laplacian基本公式,展示了其在浸入和浸没中的特征。书中讲述了该领域的一些主要基本理论,如:微分方程的存在定理、性、光滑定理和向量域流,包括子流形管状邻域的存在性的向量丛基本理论,微积分形式,包括经典2-形式的辛流形基本观点,黎曼和伪黎曼流形协变导数以及其在指数映射中的应用,Cartan-Hadamard定理和变分微积分基本定理。目次:(部分)一般微分方程;微积分;流形;向量丛;向量域和微分方程;向量域和微分形式运算;Frobenius定理;(第二部分)矩阵、协变导数和黎曼几何:矩阵;协变导数和测地线;曲率;二重切线丛的张量分裂;曲率和变分公式;半负曲率例子;自同构和对称;浸入和浸没;(第三部分)体积形式和积分:体积形式;微分形式的积分;Stokes定理;Stokes定理的应用;谱理论。 目录 Foreword Acknowledgments PART Ⅰ General Differential Theory CHAPTER Ⅱ Differential Calculus 1.Categories 2.Topological Vector Spaces 3.Derivatives and Composition of Maps 4.Integration and Taylor's Formula 5.The Inverse Mapping Theorem CHAPTER Ⅱ Manifolds 1.Atlases, Charts, Morphisms 2.Submanifolds, Immersions, Submersions 3.Partitions of Unity 4.Manifolds with Boundary CHAPTER Ⅲ Vector Bundles 1.Definition, Pull Backs 2.The Tangent Bundle 3.Exact Sequences of Bundles 4.Operations on Vector Bundles 5.Splitting of Vector Bundles CHAPTER Ⅳ Vector Fields and Differential Equations 1.Estence Theorem for Differential Equations 2.Vector Fields, Curves, and Flows 3.Sprays 4.The Flow of a Spray and the Exponential Map 5.Estence of Tubular Neiorhoods 6.Uniqueness of Tubular Neiorhoods CHAPTER Ⅴ Operations on Vector Fields and Differential Forms 1.Vector Fields, Differential Operators, Brackets 2.Lie Derivative 3.Exterior Derivative 4.The Poincare Lemma. 5.Contractions and Lie Derivative 6.Vector Fields and l-Forms Under Self Duality 7.The Canonical 2-Form 8.Darboux's Theorem CHAPTER Ⅵ The Theorem ol Frobenius 1.Statement of the Theorem 2.Differential Equations Depending on a Parameter 3.Proof of the Theorem 4.The Global Formulation 5.Lie Groups and Subgroups PART Ⅱ Metrics, Covariant Derivatives, and Riemannian Geometry CHAPTER Ⅶ Metrics 1.Definition and Functoriality 2.The Hilbert Group 3.Reduction to the Hiibert Group 4.Hilbertian Tubular Neiorhoods 5.The Morse-Palais Lemma 6.The Riemannian Distance 7.The Canonical Spray CHAPTER Ⅷ Covarlent Derivatives and Geodesics 1.Basic Properties 2.Sprays and Covariant Derivatives 3.Derivative Along a Curve and Parallelism 4.The Metric Derivative 5.More Local Results on the Exponential Map 6.Riemannian Geodesic Length and Completeness CHAPTER Ⅸ curvature 1.The Riemann Tensor 2.Jacobi Lifts. 3.Application of Jacobi Lifts to Texp 4.Convety Theorems. 5.Taylor ExpansionsPART Ⅲ Volume Forms and IntegrationIndex 作者介绍
以下为对购买帮助不大的评价