• 管道缺陷电磁超声螺旋导波层析成像方法
21年品牌 40万+商家 超1.5亿件商品

管道缺陷电磁超声螺旋导波层析成像方法

41.68 5.3折 79 九五品

仅1件

北京通州
认证卖家担保交易快速发货售后保障

作者王哲

出版社清华大学出版社

ISBN9787302636847

出版时间2023-10

版次1

装帧精装

开本16开

纸张胶版纸

定价79元

上书时间2024-07-15

灵感飞驰

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九五品
商品描述
基本信息
书名:管道缺陷电磁超声螺旋导波层析成像方法
定价:79.00元
作者:王哲
出版社:清华大学出版社
出版日期:2023-10-01
ISBN:9787302636847
字数:
页码:
版次:
装帧:精装
开本:16开
商品重量:
编辑推荐
《管道缺陷电磁超声螺旋导波层析成像方法》基于超声导波检测法开展研究,设计了用于金属管道的螺旋兰姆波电磁超声换能器结构;提出了多模态导波分离方案,形成了不同模态导波信号的走时和幅度特征提取算法;建立了基于概率性重构的缺陷定性评估方法和基于超声衍射的缺陷定量评估方法;为管道无损检测和管道结构健康监测提供了新的思路。
内容提要
为在管道中激发出螺旋导波,《管道缺陷电磁超声螺旋导波层析成像方法》提出了一种检测金属管道缺陷用螺旋Lamb波电磁超声换能器结构,确立了它的设计原则,阐述了它的工作原理,定义了声场分析用圆周角度分布图。 为辨识并分离时域重叠的多模态导波信号,提出了一种基于多项式Chirplet变换的多模态导波分离方案,形成了不同模态导波信号的走时和幅度特征提取算法。 为定性评估管道缺陷的严重程度,提出了一种快速多螺旋Lamb波层析成像方法。具体地,基于对导波的直射线近似,建立了螺旋Lamb波缺陷检测概率性重构方法。 为定量评估管道缺陷的深度和轮廓,提出了一种基于超声衍射的高分辨率层析成像方法。具体建立了跨孔层析傅里叶衍射定理,提出了有限投影下的压缩感知层析成像模型。
目录
章绪论1.1选题背景和意义1.2管道电磁超声导波检测的研究现状1.2.1电磁超声导波激发机理1.2.2管道中的超声导波1.3导波投影数据提取方法研究现状1.3.1导波与缺陷的相互作用1.3.2导波信号分析与投影数据提取1.4管道缺陷导波成像方法研究现状1.5本书研究内容第2章管道螺旋兰姆波电磁超声换能器研究2.1本章引论2.2螺旋兰姆波电磁超声换能器结构设计2.2.1兰姆波的基础理论2.2.2螺旋兰姆波换能器设计2.3管道螺旋兰姆波洛伦兹力理论模型2.4螺旋兰姆波换能器性能仿真验证2.5螺旋兰姆波换能器试验验证和比较分析2.5.1平台搭建和试验验证2.5.2与传统换能器的比较2.6本章小结第3章超声导波重叠信号分离和特征提取3.1本章引论3.2重叠信号分离识别和特征提取3.2.1导波的频散和多模特性3.2.2多项式Chirplet变换3.2.3基函数的构建3.2.4非平稳信号的瞬时频率3.3重叠导波信号分离和特征提取步骤3.4仿真信号试验验证3.4.1边界反射案例3.4.2变距离缺陷下的稳健性验证3.5复杂反射试验验证和比较3.5.1考虑缺陷和边界带来的重叠3.5.2进一步比较和分析3.6本章小结第4章基于直射线近似的快速螺旋导波层析成像4.1本章引论4.2管道多螺旋角度导波直线传播模型4.3概率性重构成像方法4.3.1基于信号差异系数的成像模型4.3.2概率性重构方法步骤4.4基于概率性重构的层析成像仿真试验验证4.4.1单缺陷案例4.4.2双缺陷案例4.5实际复杂缺陷试验验证4.5.1平台搭建和成像验证4.5.2进一步比较和分析4.6本章小结第5章基于超声衍射的高分辨率螺旋导波层析成像5.1本章引论5.2针对跨孔层析的傅里叶衍射定理5.3压缩感知波动层析成像模型5.3.1非均匀快速傅里叶变换5.3.2有限投影下的层析重建5.3.3压缩感知求解模型5.4基于超声衍射的层析成像方法与步骤5.5阶梯状缺陷波动层析成像仿真试验验证5.6复杂缺陷波动层析成像试验验证5.6.1实际复杂缺陷成像验证5.6.2进一步比较和分析5.7本章小结第6章总结与展望6.1结论6.2进一步工作的建议参考文献CONTENTSChapter 1Introduction11.1Background and Significance of Topic Selection11.2Research Status of Electromagnetic Ultrasonic Guided Wave Inspection of Pipelines31.2.1Electromagnetic Ultrasonic Guided Wave Excitation Mechanism31.2.2Ultrasonic Guided Waves in Pipelines41.3Research Status of Guided Wave Projection Data Extraction Method61.3.1Interaction of Guided Waves with Defects61.3.2Guided Wave Signal Analysis and Projection Data Extraction81.4Research Status of Guided Wave Imaging Methods for Pipeline Defects101.5Research Content13Chapter 2Research on Pipeline Helical Lamb Wave Electromagnetic Ultrasonic Transducers162.1Introduction to this Chapter162.2Structural Design of Helical Lamb Wave Electromagnetic Ultrasonic Transducer172.2.1The Basic Theory of Lamb Wave172.2.2Design of Helical Lamb Wave Transducer202.3Theoretical Model of the Lorentz Force for the Pipeline Helical Lamb Wave232.4Simulation and Verification of the Performance of the Helical Lamb Wave Transducer252.5Experimental Verification and Comparative Analysis of Helical Lamb Wave Transducers292.5.1Platform Construction and Verification292.5.2Comparison with Traditional Transducers322.6Chapter Summary36Chapter 3Ultrasonic Guided Wave Overlapping Signal Separation and Feature Extraction383.1Introduction to this Chapter383.2Overlapping Signal Separation Identification and Feature Extraction393.2.1Dispersion and Multimode Characteristics of Guided Waves393.2.2Polynomial Chirplet Transform403.2.3Construction of Basis Functions433.2.4Instantaneous Frequencies of Non-Stationary Signals453.3Overlapping Guided Wave Signal Separation and Feature Extraction Steps463.4Verification with Simulation Signal483.4.1Boundary Reflection Case493.4.2Robustness Verification under Defects with Variable Distance513.5Verification and Comparison under Complex Reflection553.5.1Considering Overlap from Defects and Boundaries553.5.2Further Comparison and Analysis593.6Chapter Summary62Chapter 4Fast Helical Guided Wave Tomography Based on Staight Ray Appromation634.1Introduction to this Chapter634.2Pipeline MultiHelical Guided Wave Propagation Model644.3Probabilistic Reconstruction Imaging Methods664.3.1Imaging Models Based on Signal Difference Coefficient664.3.2Probabilistic Reconstruction Method Steps694.4Verification for Tomography Based on Probabilistic Reconstruction with Simulation Signal704.4.1The Single Defect Case704.4.2The Double Defect Case744.5Verification with Real Complex Defect754.5.1Platform Construction and Imaging Verification754.5.2Further Comparison and Analysis774.6Chapter Summary80Chapter 5Ultrasonic DiffractionBased HighResolution Helical Guided Wave Tomography815.1Introduction to this Chapter815.2The Fourier Diffraction Theorem for Cross-hole Tomography825.3The Compressed Sensing Tomography875.3.1Non-uniform Fast Fourier Transform885.3.2Tomographic Reconstruction under Finite Projection915.3.3Solution Based on Compressed Sensing945.4Procedures of Ultrasound Diffraction-Based Tomography955.5Verification with Simulated Staircase Defect for Tomography975.6Verification of Tomography with Complex Defect1035.6.1Verification with Real Complex Defect1035.6.2Further Comparison and Analysis1055.7Chapter Summary108Chapter 6Conclusions and Future Recommendations1096.1Conclusion1096.2Recommendations for Further Work111References112
作者介绍
王哲,2012至2016年就读于重庆大学电气工程学院,获得电气工程学士学位;2016至2021年就读于清华大学电机工程与应用电子技术系,获得电气工程博士学位。在校期间,获得清华大学优秀博士论文等荣誉。
序言

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP