高等微积分
¥
253.24
¥
52
九五品
仅1件
作者影印
出版社清华大学出版社
ISBN9787302214816
出版时间2010-06
版次1
装帧平装
开本16开
纸张胶版纸
页数386页
定价52元
上书时间2024-06-30
商品详情
- 品相描述:九五品
- 商品描述
-
基本信息
书名:高等微积分
定价:52.00元
作者:影印
出版社:清华大学出版社
出版日期:2010-06-01
ISBN:9787302214816
字数:
页码:386
版次:1
装帧:平装
开本:12开
商品重量:
编辑推荐
内容提要
本书是本科生的微积分教学用书,主要内容为:牛顿运动学基本定律(开篇),向量代数,天体力学简介,线性变换,微分形式和微分演算,隐函数反函数定理,重积分演算,曲线曲面积分,微积分基本定理,经典场论基本定理,爱因斯坦狭义相对论简介。本书特别注意数学与物理、力学等自然科学的内在联系和应用。作者在理念导引、内容选择、程度深浅、适用范围等方面都有相当周密的考虑。从我们国内重点大学的教学角度看,本书的难易程度与物理、力学和电类专业数学课的微积分相当,而思想内容则要深刻和生动些,因此适于用作这些专业本科生的教科书或学习参考书。
目录
preface 1 f = ma1 1.1 prelude to newton's principia 1 1.2 equal area in equal time 5 1.3 the law of gravity 9 1.4 exercises16 1.5 reprise with calculus 18 1.6 exercises262 vector algebra 29 2.1 basic notions29 2.2 the dot product 34 2.3 the cross product39 2.4 using vector algebra 46 2.5 exercises 503 celestial mechanics 53 3.1 the calculus of curves 53 3.2 exercises05 3.3 orbital mechanics 06 3.4 exercises754 differential forms 77 4.ome history77 4.2 differential 1-forms 79 4.3 exercises 86 4.4 constant differential 2-forms 89 4.5 exercises 96 4.6 constant differential k-forms 99 4.7 prospects 105 4.8 exercises 1075 line integrals, multiple integrals 111 5.1 the riemann integral 111 5.2 linelntegrals.113 5.3 exercises llo 5.4 multiple- -integrals 120 5.5 using multiple integrals 131 5.6 exercises6 linear transformations 139 6.1 basicnotions.139 0.2 determinants 146 6.3 history and comments 157 6.4 exercises 158 6.5 invertibility 165 6.6 exercises7 differential calculus 171 7.1 limits 171 7.2 exercises 178 7.3 directional derivatives 181 7.4 the derivative 187 7.5 exercises 197 7.6 the chain rule._a201 7.7 usingthegradient.205 7.8 exercises 2078 integration by pullback 211 8.1 change of variables 211 8.2 interlude with'lagrange 213 8.4 thesurfacelntegral 221 8.5 heatflow228 8.6 exercises 2309 techniques of differential calculus 233 9.1 implicitdifferentiation 233 9.2 invertibility 238 9 3 exercises 244 9.4 locating extrema 248 9.5 taylor's formula in several variables 254 9.6 exercises 262 9.7 lagrangemultipliers266 9 8 exercises27710 the fundamental theorem of calculus 279 10.1 overview 279 10.2 independence of path 286 10.3 exercises 294 10.4 the divergence theorems 297 10.5 exercises 310 10.6 stokes' theorem 314 10.7 summary for r3 321 10.8 exercises 323 10.9 potential theory 32611 e = mc2 333 11.2 flow in space-time 338 11.3 electromagnetic potential 345 11.4 exercises 349 11.5 specialrelativity 352 11.6 exercises 360appendices a an opportunity missed 361 b bibliography365 c clues and solutions367index 382
作者介绍
序言
— 没有更多了 —
以下为对购买帮助不大的评价