内容提要 本书以通俗易懂的方式讲述几何与群的本质,以及两者问的联系(即对称),并且自然地延伸到一些高级的观点和材料(如有限和仿射Coxeter群,这是李群李代数以及Kac—Moody代数的基础;球面的分割,这是球面几何的内容;上半平面被群SL2(z)的作用,这是双曲几何与自守函数的基础)。阅读本书所需的几何与群的知识在书中均有通俗易懂的介绍(附有大量几何直观图形)。 本书是一本优秀的数学教材,适用于数学系本科生和其他专业对数学有兴趣的本科生用作数学参考书或课外读物。 目录 1. Metric Spaces and their Groups 1.1 Metric Spaces 1.2 Isometries 1.3 Isometries of the Real Line 1.4 Matters Arising 1.5 Symmetry Groups2. Isometries of the Plane 2.1 Congruent Triangles 2.2 Isometries of Different Types 2.3 The Normal Form Theorem 2.4 Conjugation of Isometries3. Some Basic Group Theory 3.1 Groups 3.2 Subgroups 3.3 Factor Groups 3.4 Semidirect Products4. Products of Reflections 4.1 The Product of Two Reflections 4.2 Three Reflections 4.3 Four or More5. Generators and Relations 5.1 Examples 5.2 Semidirect Products Again 5.3 Change of Presentation 5.4 Triangle Groups 5.5 Abelian Groups6. Discrete Subgroups of the Euclidean Group 6.1 Leonardo's Theorem 6.2 A Trichotomy 6.3 Friezes and Their Groups 6.4 The Classification7. Plane Crystallographic Groups: OP Case 7.1 The Crystallographic Restriction 7.2 The Parameter n 7.3 The Choice of b 7.4 Conclusion8. Plane Crystallographic Groups: OR Case 8.1 A Useful Dichotomy 8.2 The Case n = 1 8.3 The Case n = 2 8.4 The Case n = 4 8.5 The Case n = 3 8.6 The Case n - 69. Tessellations of the Plane 9.1 Regular Tessellations 9.2 Descendants of (4, 4) 9.3 Bricks 9.4 Split Bricks 9.5 Descendants of (3, 6)10. Tessellations of the Sphere 10.1 Spherical Geometry 10.2 The Spherical Excess 10.3 Tessellations of the Sphere 10.4 The Platonic Solids 10.5 Symmetry Groups11. Triangle Groups 11.1 The Euclidean Case 11.2 The Elliptic Case 11.3 The Hyperbolic Case 11.4 Coxeter Groups12. Regular Polytopes 12.1 The Standard Examples 12.2 The Exceptional Types in Dimension Four 12.3 Three Concepts and a Theorem 12.4 Schlafli's TheoremSolutionsGuide to the LiteratureBibliographyIndex of NotationIndex 作者介绍
以下为对购买帮助不大的评价