内容提要 在微分几何和拓扑学中,人们常常处理偏微分等式和不等式组,它们不管加上什么边界条件总有无穷多个解。在1950年代人们发现,这种类型的微分关系(即等式或不等式)的可解性常常可以化为一个纯粹的具同伦论性质的问题。在此情形下人们说:相应的微分关系满足h-原理。h-原理的两个例子是:黎曼几何中Nash-Kuiper的Cl-等度嵌入理论和微分拓扑中的Smale-Hirsch浸没理论,它们后来被Gromov转换为建立h-原理的强有力的一般方法。 作者介绍了^一原理的两个主要证明方法:完整性近似和凸积分。除了几个的例外,h-原理的大部分例子都可以用这里的方法来处理。《美国数学会经典影音系列:h-原理引论(英文版)》还特别强调了辛几何和切触几何的应用。 Gromov的名著Partial Differential Relations是面向专家的关于h-原理的百科全书,而《美国数学会经典影音系列:h-原理引论(英文版)》则是第1本关于此理论及其应用的能被广泛接受的论著。《美国数学会经典影音系列:h-原理引论(英文版)》是关于解偏微分等式和不等式几何方法的一本很好的研究生教材。学习几何、拓扑和分析的人都可从中深受裨益。 目录 PrefaceIntriguePart 1 Holonomic AppromationChapter 1. Jets and Holonomy§1.1. Maps and sections§1.2. Coordinate definitioofjets§1.3. Invariant definitioofjets§1.4. The space X (1)§1.5. Holonomic sections of the jet space X (r)§1.6. Geometric representatioof sections of X (r)§1.7. Holonomic splittingChapter 2. Thom Transversality Theorem§2.1. Generic properties and transversality§2.2. Stratified sets and polyhedra§2.3. Thom Transversality TheoremChapter 3. Holonomic Appromation§3.1. Maitheorem§3.2. Holonomic appromatioover a cube§3.3. Fiberwise holonomic sections§3.4. Inductive Lemma§3.5. Proof of the Inductive Lemma§3.6. Holonomic appromatioover a cube§3.7. Parametric caseChapter 4. Applications§4.1. Functions without critical points§4.2. Smale's sphere eversion§4.3. Opemanifolds§4.4. Appromate integratioof tangential homotopies§4.5. Directed embeddings of opemanifolds§4.6. Directed embeddings of closed manifolds§4.7. Appromatioof differential formy closed formsPart 2 Differential Relations and Gromov's h-PrincipleChapter 5. Differential Relations§5.1. What is a differential relation?§5.2. Opeand closed differential relations§5.3. Formal and genuine solutions of a differential relation§5.4. Extensioproblem§5.5. Appromate solutions to systems of differential equationsChapter 6. Homotopy Principle§6.1. Philosophy of the h-principle§6.2. Different flavors of the h-principleChapter 7. OpeDiff V-Invariant Differential Relations§7.1. Diff V-invariant differential relations§7.2. Local h-principle for opeDiff V-invariant relationsChapter 8. Applications to Closed Manifolds§8.1. Microextensiotrick§8.2. Smale-Hirsch h-principle§8.3. Sections transversal to distributionPart 3 The Homotopy Principle iSymplectic GeometryChapter 9. Symplectic and Contact Basics§9.1. Linear symplectic and complex geometries§9.2. Symplectic and complex manifolds……Part 4 Convex IntegrationBibliographyIndex 作者介绍
以下为对购买帮助不大的评价