• 代数学基础(上册)
21年品牌 40万+商家 超1.5亿件商品

代数学基础(上册)

批量上传,套装书可能不全,下单前咨询在线客服! 正版书 !!!

69.7 7.1折 98 全新

库存6件

四川成都
认证卖家担保交易快速发货售后保障

作者孙毅,杨柳,陈殿友

出版社科学出版社

ISBN9787030453952

出版时间2015-12

装帧平装

开本16开

定价98元

货号29544108

上书时间2024-10-21

百叶图书

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
导语摘要
《代数学基础(上册)》是为非数学学科的研究生编写的公共数学教材,分上、下两册:上册是矩阵论,下册是抽象代数。
本册书内容包括线性空间与线性变换、内积空间、矩阵的相似标准形、矩阵分解、广义逆矩阵、矩阵分析、矩阵函数、特征值估计等。《代数学基础(上册)》内容适当、语言简练、表达规范、论述严谨,为适应读者线性代数基础的差异,还专门编写了一章预备知识,便于取舍,宜于教学。

目录
目录
序言
前言
第0章预备知识 1
0.1多项式 1
0.1.1数域 1
0.1.2多项式的运算 2
0.1.3多项式的整除性 3
0.1.4多项式的根与标准分解 4
习题0.1 5
0.2方阵的特征值与特征向量 6
习题0.2 9
0.3正交矩阵与酉矩阵 9
0.3.1实向量的内积与正交矩阵 10
0.3.2共轭矩阵 11
0.3.3复向量的内积与酉矩阵 12
习题0.3 14
0.4H-矩阵与H-二次型 14
0.4.1H-矩阵的定义与基本性质 14
0.4.2H-二次型 15
习题0.4 17
第1章线性空间与线性变换 18
1.1线性空间的定义及基本性质 18
1.1.1线性空间的定义 18
1.1.2线性空间的基本性质 21
习题1.1 23
1.2基与维数 23
习题1.2 28
1.3坐标与坐标变换 29
1.3.1向量的坐标 29
1.3.2基变换与坐标变换 32
习题1.3 35
1.4线性变换及其性质 36
1.4.1变换及其运算 36
1.4.2线性变换的定义与基本性质 38
习题1.4 42
1.5线性变换与矩阵 44
1.5.1线性变换的矩阵 44
1.5.2线性变换与矩阵的对应关系 47
1.5.3线性变换的特征值与特征向量 50
习题1.5 53
1.6线性空间的子空间 54
1.6.1子空间及其判别 54
1.6.2子空间的交与和 56
*1.6.3线性变换的不变子空间 59
习题1.6 60
第2章内积空间 63
2.1内积空间的定义与基本性质 63
习题2.1 68
2.2标准正交基 68
习题2.2 72
2.3欧氏空间 72
2.3.1欧氏空间的度量矩阵 72
2.3.2子空间的正交补 74
2.3.3正交变换与对称变换 76
习题2.3 79
*2.4酉空间简介 81
第3章矩阵的相似标准形 84
3.1方阵相似于对角矩阵的条件 84
习题3.1 87
3.2H-矩阵的相似对角化 88
习题3.2 91
3.3矩阵的Jordan标准形 91
3.3.1多项式矩阵及其初等变换 92
3.3.2Jordan标准形的求法 94
习题3.3 99
3.4Jordan形的应用 100
3.4.1相似因子的求法 100
3.4.2Jordan形应用举例 103
习题3.4 106
第4章矩阵分解 107
4.1矩阵的QR分解及满秩分解 107
4.1.1矩阵的QR和UR分解 107
4.1.2矩阵的满秩分解 110
习题4.1 113
4.2矩阵的谱分解 114
习题4.2 119
4.3正规矩阵的分解 119
习题4.3 123
4.4矩阵的奇异值分解 124
习题4.4 130
第5章广义逆矩阵 131
5.1M-P广义逆 131
5.1.1广义逆矩阵的概念 131
5.1.2M-P广义逆 132
习题5.1 137
5.2其他几种常用的广义逆矩阵 138
5.2.1矩阵的{1}-逆 138
5.2.2矩阵{1,2}-逆,{1,3}-逆及{1,4}-逆 139
习题5.2 141
5.3广义逆矩阵在求解线性方程组中的应用 141
5.3.1线性方程组的相容性及通解与{1}-逆 142
5.3.2相容的线性方程组的极小范数解与矩阵的{1,4}-逆 144
5.3.3矛盾方程组的小二乘解与矩阵的{1,3}-逆 145
5.3.4不相容的线性方程组的极小范数小二乘解与矩阵的M-P广义逆 146
习题5.3 148
第6章矩阵分析 149
6.1向量与矩阵的范数 149
6.1.1向量范数 149
6.1.2矩阵范数 152
习题6.1 157
6.2向量与矩阵序列的收敛性 158
习题6.2 162
6.3矩阵的导数 162
6.3.1函数矩阵对变量的导数 162
6.3.2函数对矩阵的导数 165
6.3.3矩阵对矩阵的导数 166
习题6.3 168
*6.4矩阵的微分与积分 169
第7章矩阵函数 172
7.1矩阵多项式 172
7.1.1矩阵的小多项式 172
7.1.2矩阵多项式的计算 176
习题7.1 179
7.2一般矩阵函数 180
7.2.1矩阵函数的定义与性质 180
7.2.2用Jordan标准形表达矩阵函数 181
7.2.3用L-S多项式表达矩阵函数 184
习题7.2 188
7.3用幂级数表示的矩阵函数 189
7.3.1矩阵级数与矩阵幂级数的收敛性 189
7.3.2用幂级数表达某些矩阵函数 193
习题7.3 196
第8章特征值的估计 198
8.1特征值界的估计 198
习题8.1 201
8.2特征值所在区域的估计 201
习题8.2 204
8.3H-矩阵特征值的表示 204
习题8.3 206
部分习题参考答案 207
参考文献 233
附录多项式矩阵概述及Jordan定理的证明 234

内容摘要
《代数学基础(上册)》是为非数学学科的研究生编写的公共数学教材,分上、下两册:上册是矩阵论,下册是抽象代数。
本册书内容包括线性空间与线性变换、内积空间、矩阵的相似标准形、矩阵分解、广义逆矩阵、矩阵分析、矩阵函数、特征值估计等。《代数学基础(上册)》内容适当、语言简练、表达规范、论述严谨,为适应读者线性代数基础的差异,还专门编写了一章预备知识,便于取舍,宜于教学。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP