批量上传,套装书可能不全,下单前咨询在线客服! 正版书 !!!
¥ 66.66 7.5折 ¥ 89 全新
库存7件
作者(美)Dimitri P. Bertsekas 著
出版社清华大学出版社
ISBN9787302430704
出版时间2016-05
装帧平装
开本16开
定价89元
货号23977004
上书时间2024-10-18
Contents 1. Convex Optimization Models: An Overview . . . . . . p. 1 1.1. LagrangeDuality .......... .......... p.2 1.1.1. Separable Problems – Decomposition . . . . . . . . . p. 7 1.1.2. Partitioning .................... p.9 1.2. Fenchel Duality and Conic Programming . . . . . . . . . . p. 10 1.2.1. LinearConicProblems . . . . . . . . . . . . . . . p.15 1.2.2. Second Order Cone Programming . . . . . . . . . . . p. 17 1.2.3. Semide.nite Programming . . . . . . . . . . . . . . p. 22 1.3. AdditiveCostProblems . . . . . . . . . . . . . . . . . p.25 1.4. LargeNumberofConstraints . . . . . . . . . . . . . . . p.34 1.5. ExactPenalty Functions . . . . . . . . . . . . . . . . p.39 1.6. Notes,Sources,andExercises . . . . . . . . . . . . . . p.47 2. Optimization Algorithms: An Overview . . . . . . . . p. 53 2.1. IterativeDescentAlgorithms . . . . . . . . . . . . . . . p.55 2.1.1. Di.erentiable Cost Function Descent – Unconstrained . . . . Problems ..................... p.58 2.1.2. Constrained Problems – Feasible Direction Methods . . . p. 71 2.1.3. Nondi.erentiable Problems – Subgradient Methods . . . p. 78 2.1.4. Alternative Descent Methods . . . . . . . . . . . . . p. 80 2.1.5. IncrementalAlgorithms . . . . . . . . . . . . . . . p.83 2.1.6. Distributed Asynchronous Iterative Algorithms . . . . p. 104 2.2. ApproximationMethods . . . . . . . . . . . . . . . p.106 2.2.1. Polyhedral Approximation . . . . . . . . . . . . . p. 107 2.2.2. Penalty, Augmented Lagrangian, and Interior . . . . . . . PointMethods .................. p.108 2.2.3. Proximal Algorithm, Bundle Methods, and . . . . . . . . . TikhonovRegularization . . . . . . . . . . . . . . p.110 2.2.4. Alternating Direction Method of Multipliers . . . . . p. 111 2.2.5. Smoothing of Nondi.erentiable Problems . . . . . . p. 113 2.3. Notes,Sources,andExercises . . . . . . . . . . . . . p.119 3. SubgradientMethods . . . . . . . . . . . . . . . p.135 3.1. Subgradients of Convex Real-Valued Functions . . . . . . p. 136 iv Contents 3.1.1. Characterization of the Subdi.erential . . . . . . . . p. 146 3.2. Convergence Analysis of Subgradient Methods . . . . . . p. 148 3.3. .-SubgradientMethods ................ p.162 3.3.1. Connection with Incremental Subgradient Methods . . p. 166 3.4. Notes,Sources,andExercises . . . . . . . . . . . . . . p.167 4. Polyhedral Approximation Methods . . . . . . . . . p. 181 4.1. Outer Linearization – Cutting Plane Methods . . . . . . p. 182 4.2. Inner Linearization – Simplicial Decomposition . . . . . . p. 188 4.3. Duality of Outer and Inner Linearization . . . . . . . . . p. 194 4.4. Generalized Polyhedral Approximation . . . . . . . . . p. 196 4.5. Generalized Simplicial Decomposition . . . . . . . . . . p. 209 4.5.1. Di.erentiableCostCase . . . . . . . . . . . . . . p.213 4.5.2. Nondi.erentiable Cost and Side Constraints . . . . . p. 213 4.6. Polyhedral Approximation for Conic Programming . . . . p. 217 4.7. Notes,Sources,andExercises . . . . . . . . . . . . . . p.228 5. ProximalAlgorithms . . . . . . . . . . . . . . . p.233 5.1. Basic Theory of Proximal Algorithms . . . . . . . . . . p. 234 5.1.1. Convergence ................... p.235 5.1.2. RateofConvergence. . . . . . . . . . . . . . . . p.239 5.1.3. Gradient Interpretation . . . . . . . . . . . . . . p. 246 5.1.4. Fixed Point Interpretation, Overrelaxation, . . . . . . . . . andGeneralization ................ p.248 5.2. DualProximalAlgorithms . . . . . . . . . . . . . . . p.256 5.2.1. Augmented Lagrangian Methods . . . . . . . . . . p. 259 5.3. Proximal Algorithms with Linearization . . . . . . . . . p. 268 5.3.1. Proximal Cutting Plane Methods . . . . . . . . . . p. 270 5.3.2. BundleMethods ................. p.272 5.3.3. Proximal Inner Linearization Methods . . . . . . . . p. 276 5.4. Alternating Direction Methods of Multipliers . . . . . . . p. 280 5.4.1. Applications in Machine Learning . . . . . . . . . . p. 286 5.4.2. ADMM Applied to Separable Problems . . . . . . . p. 289 5.5. Notes,Sources,andExercises . . . . . . . . . . . . . . p.293 6. Additional Algorithmic Topics . . . . . . . . . . . p. 301 6.1. GradientProjectionMethods . . . . . . . . . . . . . . p.302 6.2. Gradient Projection with Extrapolation . . . . . . . . . p. 322 6.2.1. An Algorithm with Optimal Iteration Complexity . . . p. 323 6.2.2. Nondi.erentiable Cost – Smoothing . . . . . . . . . p. 326 6.3. ProximalGradientMethods . . . . . . . . . . . . . . p.330 6.4. Incremental Subgradient Proximal Methods . . . . . . . p. 340 6.4.1. Convergence for Methods with Cyclic Order . . . . . p. 344 Contents 6.4.2. Convergence for Methods with Randomized Order . . p. 353 6.4.3. Application in Specially Structured Problems . . . . . p. 361 6.4.4. Incremental Constraint Projection Methods . . . . . p. 365 6.5. CoordinateDescentMethods . . . . . . . . . . . . . . p.369 6.5.1. Variants of Coordinate Descent . . . . . . . . . . . p. 373 6.5.2. Distributed Asynchronous Coordinate Descent . . . . p. 376 6.6. Generalized Proximal Methods . . . . . . . . . . . . . p. 382 6.7. .-Descent and Extended Monotropic Programming . . . . p. 396 6.7.1. .-Subgradients .................. p.397 6.7.2. .-DescentMethod........ ......... p.400 6.7.3. Extended Monotropic Programming Duality . . . . . p. 406 6.7.4. Special Cases of Strong Duality . . . . . . . . . . . p. 408 6.8. InteriorPointMethods . . . . . . . . . . . . . . . . p.412 6.8.1. Primal-Dual Methods for Linear Programming . . . . p. 416 6.8.2. Interior Point Methods for Conic Programming . . . . p. 423 6.8.3. Central Cutting Plane Methods . . . . . . . . . . . p. 425 6.9. Notes,Sources,andExercises . . . . . . . . . . . . . . p.426 Appendix A: Mathematical Background . . . . . . . . p. 443 A.1. LinearAlgebra ........... ......... p.445 A.2. TopologicalProperties . . . . . . . . . . . . . . . . p.450 A.3. Derivatives ..................... p.456 A.4. ConvergenceTheorems . . . . . . . . . . . . . . . . p.458 Appendix B: Convex Optimization Theory: A Summary . p. 467 B.1. Basic Concepts of Convex Analysis . . . . . . . . . . . p. 467 B.2. Basic Concepts of Polyhedral Convexity . . . . . . . . . p. 489 B.3. Basic Concepts of Convex Optimization . . . . . . . . . p. 494 B.4. Geometric Duality Framework . . . . . . . . . . . . . p. 498 B.5. Duality andOptimization . . . . . . . . . . . . . . . p.505 References .............. ......... p.519 Index ................. ......... p.557 |
以下为对购买帮助不大的评价