• Advanced Mathematics(高等数学)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

Advanced Mathematics(高等数学)

图书皆为单册 套装勿拍 48小时未发货请退款

8.89 3.2折 28 八五品

仅1件

山东滨州
认证卖家担保交易快速发货售后保障

作者陈明明 编

出版社化学工业出版社

出版时间2010-10

版次1

装帧平装

货号9787122094599

上书时间2024-08-31

读友图书旗舰店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 陈明明 编
  • 出版社 化学工业出版社
  • 出版时间 2010-10
  • 版次 1
  • ISBN 9787122094599
  • 定价 28.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 222页
  • 字数 374千字
  • 正文语种 英语
  • 丛书 高等学校规划教材;高等数学
【内容简介】
TheaimofthisbookistomeettherequirementofbilingualteachingofadvancedmathematicsTheselectionofthecontentsisinaccordancewiththefundamentalrequirementsofteachingissuedbytheMinistryofEducationofChinaAndbaseonthepropertyofouruniversity,weselectsomeexamplesaboutpetrochemicalindustryTheseexamplesmayhelpreaderstounderstandtheapplicationofadvancedmathematicsinpetrochemicalindustry
ThisbookisdividedintotwovolumesThefirstvolumecontainscalculusoffunctionsofasinglevariableanddifferentialequationThesecondvolumecontainsvectoralgebraandanalyticgeometryinspace,multivariablecalculusandinfiniteseries
Thisbookmaybeusedasatextbookforundergraduatestudentsinthescienceandengineeringschoolswhosemajorsarenotmathematics,andmayalsobesuitabletothereadersatthesamelevel.
【目录】
Chapter1Functionsandlimits11.1Mappingsandfunctions
1.1.1Sets
1.1.2Mappings
1.1.3Functions
Exercise11141.2Limitsofsequences
1.2.1Conceptoflimitsofsequences
1.2.2Propertiesofconvergentsequences
Exercise12211.3Limitsoffunctions
1.3.1Definitionsoflimitsoffunctions
1.3.2Thepropertiesoffunctionallimits
Exercise13261.4Infinitesimalandinfinityquantity
1.4.1Infinitesimalquantity
1.4.2Infinityquantity
Exercise14291.5Rulesoflimitoperations
Exercises15341.6Principleoflimitexistencetwoimportantlimits
Exercise16391.7Comparingwithtwoinfinitesimals
Exercise17421.8Continuityoffunctionsanddiscontinuouspoints
1.8.1Continuityoffunctions
1.8.2Discontinuouspointsoffunctions
Exercise18461.9Operationsoncontinuousfunctionsandthecontinuityof
elementaryfunctions
1.9.1Continuityofthesum,difference,productandquotientofcontinuousfunctions
1.9.2Continuityofinversefunctionsandcompositefunctions
1.9.3Continuityofelementaryfunctions
Exercise19491.10Propertiesofcontinuousfunctionsonaclosedinterval
1.10.1Boundednessandmaximumminimumtheorem
1.10.2Zeropointtheoremandintermediatevaluetheorem
*1.10.3Uniformcontinuity
Exercise1
Exercise

Chapter2Derivativesanddifferential552.1Conceptofderivatives
2.1.1Examples
2.1.2Definitionofderivatives
2.1.3Geometricinterpretationofderivative
2.1.4Relationshipbetweenderivabilityandcontinuity
Exercise21622.2FundamentalDerivationRules
2.2.1Derivationrulesforsum,difference,productandquotientoffunctions
2.2.2Therulesofderivativeofinversefunctions
2.2.3Therulesofderivativeofcompositefunctions(TheChainRule)
2.2.4Basicderivationrulesandderivativeformulas
Exercise22692.3Higherorderderivatives
Exercise23732.4Derivationofimplicitfunctionsandfunctionsdefined
byparametricequations
2.4.1Derivationofimplicitfunctions
2.4.2Derivationofafunctiondefinedbyparametricequations
2.4.3Relatedratesofchange
Exercise24782.5TheDifferentialsoffunctions
2.5.1Conceptofthedifferential
2.5.2Geometricmeaningofthedifferential
2.5.3Formulasandrulesondifferentials
2.5.4Applicationofthedifferentialinapproximatecomputation
Exercise2
Exercise

Chapter3Meanvaluetheoremsindifferentialcalculusand
applicationsofderivatives873.1Meanvaluetheoremsindifferentialcalculus
Exercise31923.2L'Hospital'srule
Exercise32963.3Taylorformula
Exercise331003.4Monotonicityoffunctionsandconvexityofcurves
3.4.1Monotonicityoffunctions
3.4.2Convexityofcurvesandinflectionpoints
Exercise341053.5Extremevaluesoffunctions,maximumandminimum
3.5.1Extremevaluesoffunctions
3.5.2Maximumandminimumoffunction
Exercise351123.6Differentiationofarcandcurvature
3.6.1Differentiationofanarc
3.6.2Curvature
Exercise3
Exercise

Chapter4Indefiniteintegral1204.1Conceptandpropertyofindefiniteintegral
4.1.1Conceptofantiderivativeandindefiniteintegral
4.1.2Tableoffundamentalindefiniteintegrals
4.1.3Propertiesoftheindefiniteintegral
Exercise411254.2Integrationbysubstitutions
4.2.1Integrationbysubstitutionofthefirstkind
4.2.2Integrationbysubstitutionofthesecondkind
Exercise421334.3Integrationbyparts
Exercise431374.4Integrationofrationalfunction
4.4.1Integrationofrationalfunction
4.4.2Integrationwhichcanbetransformedintotheintegrationofrationalfunction
Exercise4
Exercise

Chapter5Definiteintegrals1435.1Conceptandpropertiesofdefiniteintegrals
5.1.1Examplesofdefiniteintegralproblems
5.1.2Thedefinitionofdefineintegral
5.1.3Propertiesofdefiniteintegrals
Exercise511485.2Fundamentalformulaofcalculus
5.2.1Therelationshipbetweenthedisplacementandthevelocity
5.2.2Afunctionofupperlimitofintegral
5.2.3NewtonLeibnizformula
Exercise521545.3Integrationbysubstitutionandpartsfordefiniteintegrals
5.3.1Integrationbysubstitutionfordefiniteintegrals
5.3.2Integrationbypartsfordefiniteintegral
Exercise531605.4Improperintegrals
5.4.1Improperintegralsonaninfiniteinterval
5.4.2Improperintegralsofunboundedfunctions
Exercise541655.5TestsforConvergenceofimproperintegralsΓfunction
5.5.1Testforconvergenceofinfiniteintegral
5.5.2Testforconvergenceofimproperintegralsofunboundedfunctions
5.5.3Γfunction
Exercise5
Exercise

Chapter6Applicationsofdefiniteintegrals1736.1Methodofelementsfordefiniteintegrals1736.2Theapplicationsofthedefiniteintegralingeometry
6.2.1Areasofplanefigures
6.2.2Thevolumesofsolid
6.2.3Lengthofplanecurves
Exercise621826.3TheapplicationsofthedefiniteIntegralinphysics
6.3.1Workdonebyvariableforce
6.3.2Forcebyaliquid
6.3.3Gravity
Exercise6
Exercise

Chapter7Differentialequations1897.1Differentialequationsandtheirsolutions
Exercise711917.2Separableequations
Exercise721947.3Homogeneousequations
7.3.1Homogeneousequations
7.3.2Reductiontohomogeneousequation
Exercise731987.4Afirstorderlineardifferentialequations
7.4.1Linearequations
7.4.2Bernoulli'sequation
Exercise742017.5Reduciblesecondorderequations
7.5.1y(n)=f(x)
7.5.2y″=f(x,y′)
7.5.3y″=f(y,y′)
Exercise752067.6secondorderlinearequations
7.6.1Constructionofsolutionsofsecondorderlinearequation
7.6.2Themethodofvariationofparameters
Exercise762107.7Homogeneouslineardifferentialequationwith
constantcoefficients
Exercise772147.8Nonhomogeneouslineardifferentialequationwith
constantcoefficients
7.8.1f(x)=eλxPm(x)
7.8.2f(x)=eλxP(1)l(x)cosωx+P(2)n(x)sinωx
Exercise782197.9Euler'sdifferentialequation
Exercise7
Exercise
Reference
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP