应用随机过程
实图拍摄 以图片为准 单本非套书 每天下午6点前发快递 非偏远包邮包邮包邮包邮包邮包邮 20814027
¥
3.86
1.1折
¥
36
九品
库存14件
作者张波、商豪 著
出版社中国人民大学出版社
出版时间2016-06
版次4
装帧平装
货号20814027
上书时间2024-04-20
商品详情
- 品相描述:九品
- 商品描述
-
第1章预备知识
1.1概率空间
1.2随机变量与分布函数
1.3数字特征、矩母函数与特征函数
1.4收敛性
1.5独立性与条件期望
第2章随机过程的基本概念和基本类型
2.1基本概念
2.2有限维分布与Kolmogorov定理
2.3随机过程的基本类型
习题
第3章Poisson过程
3.1Poisson 过程
3.2与Poisson过程相联系的若干分布
3.3Poisson过程的推广
习题
第4章更新过程
4.1更新过程的定义及若干分布
4.2更新方程及其应用
4.3更新定理
4.4更新过程的推广
习题
第5章Markov链
5.1基本概念
5.2状态的分类及性质
5.3极限定理及平稳分布
5.4Markov链的应用
5.5连续时间Markov链
习题
第6章鞅
6.1基本概念
6.2鞅的停时定理及其应用
6.3一致可积性
6.4鞅收敛定理
6.5连续鞅
习题
第7章Brown运动
7.1基本概念与性质
7.2Gauss过程
7.3Brown运动的鞅性质
7.4Brown运动的Markov性
7.5Brown运动的最大值变量及反正弦律
7.6Brown运动的几种变化
7.7高维Brown运动
习题
第8章随机积分
8.1关于随机游动的积分
8.2关于Brown运动的积分
8.3It积分过程
8.4It公式
8.5随机微分方程
习题
第9章随机过程在金融中的应用
9.1金融市场的术语与基本假定
9.2BlackScholes模型
习题
第10章随机过程在保险精算中的应用
10.1基本概念
10.2经典破产理论介绍
习题
第11章Markov链Monte Carlo方法
11.1计算积分的Monte Carlo方法
11.2Markov链Monte Carlo方法简介
11.3MetropolisHastings算法
11.4Gibbs抽样
11.5贝叶斯MCMC估计方法
习题
习题参考答案
参考文献
本书面向更广泛的非数学专业学生,故着重于对随机过程的基本知识和基本方法的介绍,特别是注重实际应用,尽量回避测度论水平的严格证明。各章都配有一些与社会、经济、管理以及生物等专业相关的例子和习题,以帮助学生加深对基本理论的理解,提高应用随机过程解决实际问题的能力。
图书标准信息
-
作者
张波、商豪 著
-
出版社
中国人民大学出版社
-
出版时间
2016-06
-
版次
4
-
ISBN
9787300228358
-
定价
36.00元
-
装帧
平装
-
开本
16开
-
纸张
胶版纸
-
页数
264页
-
字数
99999千字
-
丛书
21世纪统计学系列教材
- 【内容简介】
-
本书面向更广泛的非数学专业学生,故着重于对随机过程的基本知识和基本方法的介绍,特别是注重实际应用,尽量回避测度论水平的严格证明。各章都配有一些与社会、经济、管理以及生物等专业相关的例子和习题,以帮助学生加深对基本理论的理解,提高应用随机过程解决实际问题的能力。
- 【作者简介】
-
张波,教授,博士生导师,香港科技大学数学系理学博士。中国人民大学统计学院副院长。主要从事应用概率统计,随机微分(差分)方程,随机分析在金融与保险中的应用等方向的教学和研究工作。
- 【目录】
-
第1章预备知识
1.1概率空间
1.2随机变量与分布函数
1.3数字特征、矩母函数与特征函数
1.4收敛性
1.5独立性与条件期望
第2章随机过程的基本概念和基本类型
2.1基本概念
2.2有限维分布与Kolmogorov定理
2.3随机过程的基本类型
习题
第3章Poisson过程
3.1Poisson 过程
3.2与Poisson过程相联系的若干分布
3.3Poisson过程的推广
习题
第4章更新过程
4.1更新过程的定义及若干分布
4.2更新方程及其应用
4.3更新定理
4.4更新过程的推广
习题
第5章Markov链
5.1基本概念
5.2状态的分类及性质
5.3极限定理及平稳分布
5.4Markov链的应用
5.5连续时间Markov链
习题
第6章鞅
6.1基本概念
6.2鞅的停时定理及其应用
6.3一致可积性
6.4鞅收敛定理
6.5连续鞅
习题
第7章Brown运动
7.1基本概念与性质
7.2Gauss过程
7.3Brown运动的鞅性质
7.4Brown运动的Markov性
7.5Brown运动的最大值变量及反正弦律
7.6Brown运动的几种变化
7.7高维Brown运动
习题
第8章随机积分
8.1关于随机游动的积分
8.2关于Brown运动的积分
8.3It积分过程
8.4It公式
8.5随机微分方程
习题
第9章随机过程在金融中的应用
9.1金融市场的术语与基本假定
9.2BlackScholes模型
习题
第10章随机过程在保险精算中的应用
10.1基本概念
10.2经典破产理论介绍
习题
第11章Markov链Monte Carlo方法
11.1计算积分的Monte Carlo方法
11.2Markov链Monte Carlo方法简介
11.3MetropolisHastings算法
11.4Gibbs抽样
11.5贝叶斯MCMC估计方法
习题
习题参考答案
参考文献
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价