Python数据分析与应用
【如图发货】自然老旧(泛黄)
¥
1.65
八品
仅1件
作者黄红梅、张良均 著
出版社人民邮电出版社
出版时间2018-04
版次1
装帧平装
货号1822806220945330177
上书时间2024-08-12
商品详情
- 品相描述:八品
- 商品描述
-
B-510118001-006-3-9
图书标准信息
-
作者
黄红梅、张良均 著
-
出版社
人民邮电出版社
-
出版时间
2018-04
-
版次
1
-
ISBN
9787115373045
-
定价
49.80元
-
装帧
平装
-
开本
16开
-
纸张
胶版纸
-
页数
294页
-
字数
440千字
-
正文语种
简体中文
-
丛书
大数据人才培养规划教材
- 【内容简介】
-
本书以任务为导向,全面地介绍数据分析的流程和Python数据分析库的应用,详细讲解利用Python解决企业实际问题的方法。全书共9章,* 1章介绍了数据分析的基本概念等相关知识;* 2~6章介绍了Python数据分析的常用库及其应用,涵盖NumPy数值计算、Matplotlib数据可视化、pandas统计分析、使用pandas进行数据预处理、使用scikit-learn构建模型,较为全面地阐述了Python数据分析方法;第7~9章结合之前所学的数据分析技术,进行企业综合案例数据分析。除* 1章外,本书各章都包含了实训与课后习题,通过练习和操作实践,帮助读者巩固所学的内容。
本书可作为高校大数据技术类专业的教材,也可以作为大数据技术爱好者的自学用书。
- 【作者简介】
-
张良均,高 级信息系统项目管理师,泰迪杯全国大学生数据挖掘竞赛(www.tipdm.org)的发起人。华南师范大学、广东工业大学兼职教授,广东省工业与应用数学学会理事。兼有大型高科技企业和高校的工作经历,主要从事大数据挖掘及其应用的策划、研发及咨询培训。全国计算机技术与软件专业技术资格(水平)考试继续教育和CDA数据分析师培训讲师。发表数据挖掘相关论文数二十余篇,已取得国家发明专利12项,主编图书《神经网络实用教程》《数据挖掘:实用案例分析》《Python数据分析与挖掘》等多本畅销图书,主持并完成科技项目9项。获得SAS、SPSS数据挖掘认证及Hadoop开发工程师证书,具有电力、电信、银行、制造企业、电子商务和电子政务的项目经验和行业背景。
- 【目录】
-
第1章 Python数据分析概述 1
任务1.1 认识数据分析 1
1.1.1 掌握数据分析的概念 2
1.1.2 掌握数据分析的流程 2
1.1.3 了解数据分析应用场景 4
任务1.2 熟悉Python数据分析的工具 5
1.2.1 了解数据分析常用工具 6
1.2.2 了解Python数据分析的优势 7
1.2.3 了解Python数据分析常用类库 7
任务1.3 安装Python的Anaconda发行版 9
1.3.1 了解Python的Anaconda发行版 9
1.3.2 在Windows系统中安装Anaconda 9
1.3.3 在Linux系统中安装Anaconda 12
任务1.4 掌握Jupyter Notebook常用功能 14
1.4.1 掌握Jupyter Notebook的基本功能 14
1.4.2 掌握Jupyter Notebook的高 级功能 16
小结 19
课后习题 19
* 2章 NumPy数值计算基础 21
任务2.1 掌握NumPy数组对象ndarray 21
2.1.1 创建数组对象 21
2.1.2 生成随机数 27
2.1.3 通过索引访问数组 29
2.1.4 变换数组的形态 31
任务2.2 掌握NumPy矩阵与通用函数 34
2.2.1 创建NumPy矩阵 34
2.2.2 掌握ufunc函数 37
任务2.3 利用NumPy进行统计分析 41
2.3.1 读/写文件 41
2.3.2 使用函数进行简单的统计分析 44
2.3.3 任务实现 48
小结 50
实训 50
实训1 创建数组并进行运算 50
实训2 创建一个国际象棋的棋盘 50
课后习题 51
第3章 Matplotlib数据可视化基础 52
任务3.1 掌握绘图基础语法与常用参数 52
3.1.1 掌握pyplot基础语法 53
3.1.2 设置pyplot的动态rc参数 56
任务3.2 分析特征间的关系 59
3.2.1 绘制散点图 59
3.2.2 绘制折线图 62
3.2.3 任务实现 65
任务3.3 分析特征内部数据分布与分散状况 68
3.3.1 绘制直方图 68
3.3.2 绘制饼图 70
3.3.3 绘制箱线图 71
3.3.4 任务实现 73
小结 77
实训 78
实训1 分析1996~2015年人口数据特征间的关系 78
实训2 分析1996~2015年人口数据各个特征的分布与分散状况 78
课后习题 79
第4章 pandas统计分析基础 80
任务4.1 读/写不同数据源的数据 80
4.1.1 读/写数据库数据 80
4.1.2 读/写文本文件 83
4.1.3 读/写Excel文件 87
4.1.4 任务实现 88
任务4.2 掌握DataFrame的常用操作 89
4.2.1 查看DataFrame的常用属性 89
4.2.2 查改增删DataFrame数据 91
4.2.3 描述分析DataFrame数据 101
4.2.4 任务实现 104
任务4.3 转换与处理时间序列数据 107
4.3.1 转换字符串时间为标准时间 107
4.3.2 提取时间序列数据信息 109
4.3.3 加减时间数据 110
4.3.4 任务实现 111
任务4.4 使用分组聚合进行组内计算 113
4.4.1 使用groupby方法拆分数据 114
4.4.2 使用agg方法聚合数据 116
4.4.3 使用apply方法聚合数据 119
4.4.4 使用transform方法聚合数据 121
4.4.5 任务实现 121
任务4.5 创建透视表与交叉表 123
4.5.1 使用pivot_table函数创建透视表 123
4.5.2 使用crosstab函数创建交叉表 127
4.5.3 任务实现 128
小结 130
实训 130
实训1 读取并查看P2P网络贷款数据主表的基本信息 130
实训2 提取用户信息更新表和登录信息表的时间信息 130
实训3 使用分组聚合方法进一步分析用户信息更新表和登录信息表 131
实训4 对用户信息更新表和登录信息表进行长宽表转换 131
课后习题 131
第5章 使用pandas进行数据预处理 133
任务5.1 合并数据 133
5.1.1 堆叠合并数据 133
5.1.2 主键合并数据 136
5.1.3 重叠合并数据 139
5.1.4 任务实现 140
任务5.2 清洗数据 141
5.2.1 检测与处理重复值 141
5.2.2 检测与处理缺失值 146
5.2.3 检测与处理异常值 149
5.2.4 任务实现 152
任务5.3 标准化数据 154
5.3.1 离差标准化数据 154
5.3.2 标准差标准化数据 155
5.3.3 小数定标标准化数据 156
5.3.4 任务实现 157
任务5.4 转换数据 158
5.4.1 哑变量处理类别型数据 158
5.4.2 离散化连续型数据 160
5.4.3 任务实现 162
小结 163
实训 164
实训1 插补用户用电量数据缺失值 164
实训2 合并线损、用电量趋势与线路告警数据 164
实训3 标准化建模专家样本数据 164
课后习题 165
第6章 使用scikit-learn构建模型 167
任务6.1 使用sklearn转换器处理数据 167
6.1.1 加载datasets模块中的数据集 167
6.1.2 将数据集划分为训练集和测试集 170
6.1.3 使用sklearn转换器进行数据预处理与降维 172
6.1.4 任务实现 174
任务6.2 构建并评价聚类模型 176
6.2.1 使用sklearn估计器构建聚类模型 176
6.2.2 评价聚类模型 179
6.2.3 任务实现 182
任务6.3 构建并评价分类模型 183
6.3.1 使用sklearn估计器构建分类模型 183
6.3.2 评价分类模型 186
6.3.3 任务实现 188
任务6.4 构建并评价回归模型 190
6.4.1 使用sklearn估计器构建线性回归模型 190
6.4.2 评价回归模型 193
6.4.3 任务实现 194
小结 196
实训 196
实训1 使用sklearn处理wine和wine_quality数据集 196
实训2 构建基于wine数据集的K-Means聚类模型 196
实训3 构建基于wine数据集的SVM分类模型 197
实训4 构建基于wine_quality数据集的回归模型 197
课后习题 198
第7章 航空公司客户价值分析 199
任务7.1 了解航空公司现状与客户价值分析 199
7.1.1 了解航空公司现状 200
7.1.2 认识客户价值分析 201
7.1.3 熟悉航空客户价值分析的步骤与流程 201
任务7.2 预处理航空客户数据 202
7.2.1 处理数据缺失值与异常值 202
7.2.2 构建航空客户价值分析关键特征 202
7.2.3 标准化LRFMC模型的5个特征 206
7.2.4 任务实现 207
任务7.3 使用K-Means算法进行客户分群 209
7.3.1 了解K-Means聚类算法 209
7.3.2 分析聚类结果 210
7.3.3 模型应用 213
7.3.4 任务实现 214
小结 215
实训 215
实训1 处理信用卡数据异常值 215
实训2 构造信用卡客户风险评价关键特征 217
实训3 构建K-Means聚类模型 218
课后习题 218
第8章 财政收入预测分析 220
任务8.1 了解财政收入预测的背景与方法 220
8.1.1 分析财政收入预测背景 220
8.1.2 了解财政收入预测的方法 222
8.1.3 熟悉财政收入预测的步骤与流程 223
任务8.2 分析财政收入数据特征的相关性 223
8.2.1 了解相关性分析 223
8.2.2 分析计算结果 224
8.2.3 任务实现 225
任务8.3 使用Lasso回归选取财政收入预测的关键特征 225
8.3.1 了解Lasso回归方法 226
8.3.2 分析Lasso回归结果 227
8.3.3 任务实现 227
任务8.4 使用灰色预测和SVR构建财政收入预测模型 228
8.4.1 了解灰色预测算法 228
8.4.2 了解SVR算法 229
8.4.3 分析预测结果 232
8.4.4 任务实现 234
小结 236
实训 236
实训1 求取企业所得税各特征间的相关系数 236
实训2 选取企业所得税预测关键特征 237
实训3 构建企业所得税预测模型 237
课后习题 237
第9章 家用热水器用户行为分析与事件识别 239
任务9.1 了解家用热水器用户行为分析的背景与步骤 239
9.1.1 分析家用热水器行业现状 240
9.1.2 了解热水器采集数据基本情况 240
9.1.3 熟悉家用热水器用户行为分析的步骤与流程 241
任务9.2 预处理热水器用户用水数据 242
9.2.1 删除冗余特征 242
9.2.2 划分用水事件 243
9.2.3 确定单次用水事件时长阈值 244
9.2.4 任务实现 246
任务9.3 构建用水行为特征并筛选用水事件 247
9.3.1 构建用水时长与频率特征 248
9.3.2 构建用水量与波动特征 249
9.3.3 筛选候选洗浴事件 250
9.3.4 任务实现 251
任务9.4 构建行为事件分析的BP神经网络模型 255
9.4.1 了解BP神经网络算法原理 255
9.4.2 构建模型 259
9.4.3 评估模型 260
9.4.4 任务实现 260
小结 263
实训 263
实训1 清洗运营商客户数据 263
实训2 筛选客户运营商数据 264
实训3 构建神经网络预测模型 265
课后习题 265
附录A 267
附录B 270
参考文献 295
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价