¥ 10 1.3折 ¥ 80 八五品
库存2件
作者于剑 著
出版社清华大学出版社
出版时间2017-06
版次1
装帧平装
货号7-5
上书时间2024-09-22
《机器学习:从公理到算法(中国计算机学会学术著作丛书)》是一本基于公理研究学习算法的书。共17章,由两部分组成。第一部分是机器学习公理以及部分理论演绎,包括第1、2、6、8章,论述学习公理以及相应的聚类、分类理论。第二部分关注如何从公理推出经典学习算法,包括单类、多类和多源问题。第3~5章为单类问题,分别论述密度估计、回归和单类数据降维。第7、9~16章为多类问题,包括聚类、神经网络、K近邻、支持向量机、Logistic回归、贝叶斯分类、决策树、多类降维与升维等经典算法。最后第17章研究了多源数据学习问题。
《机器学习:从公理到算法(中国计算机学会学术著作丛书)》可以作为高等院校计算机、自动化、数学、统计学、人工智能及相关专业的研究生教材,也可以供机器学习的爱好者参考。
于剑,北京交通大学计算机学院教授,博士生导师,交通数据分析与挖掘北京市重点实验室主任,先后获得北京大学数学专业本科、硕士、博士,中国人工智能学会机器学习专委会副主任,中国计算机学会人工智能与模式识别专委会秘书长,承担多项国家自然科学基金项目,发表多篇学术论文,包括TPAMI、CVPR 等。
第1章引言1
11机器学习的目的:从数据到知识1
12机器学习的基本框架2
121数据集合与对象特性表示3
122学习判据4
123学习算法5
13机器学习思想简论5
延伸阅读7
习题8
参考文献9
第2章归类理论11
21类表示公理13
22归类公理17
23归类结果分类20
24归类方法设计准则22
241类一致性准则23
242类紧致性准则23
243类分离性准则25
244奥卡姆剃刀准则25
讨论27
延伸阅读29
习题30
参考文献31
第3章密度估计33
31密度估计的参数方法33
311最大似然估计33
312贝叶斯估计35
32密度估计的非参数方法39
321直方图39
322核密度估计39
323K近邻密度估计法40
延伸阅读40
习题41
参考文献41
第4章回归43
41线性回归43
42岭回归47
43Lasso回归48
讨论51
习题52
参考文献52
第5章单类数据降维53
51主成分分析54
52非负矩阵分解56
53字典学习与稀疏表示57
54局部线性嵌入59
55典型关联分析62
56多维度尺度分析与等距映射63
讨论65
习题66
参考文献66
第6章聚类理论69
61聚类问题表示及相关定义69
62聚类算法设计准则70
621类紧致性准则和聚类不等式70
622类分离性准则和重合类非稳定假设72
623类一致性准则和迭代型聚类算法73
63聚类有效性73
631外部方法73
632内蕴方法75
延伸阅读76
习题77
参考文献77
第7章聚类算法81
71样例理论:层次聚类算法81
72原型理论:点原型聚类算法83
721C均值算法84
722模糊C均值86
73基于密度估计的聚类算法88
731基于参数密度估计的聚类算法88
732基于无参数密度估计的聚类算法97
延伸阅读106
习题107
参考文献108
第8章分类理论111
81分类及相关定义111
82从归类理论到经典分类理论112
821PAC理论113
822统计机器学习理论115
83分类测试公理118
讨论119
习题119
参考文献120
第9章基于单类的分类算法:神经网络121
91分类问题的回归表示121
92人工神经网络122
921人工神经网络相关介绍122
922前馈神经网络124
93从参数密度估计到受限玻耳兹曼机129
94深度学习131
941自编码器132
942卷积神经网络132
讨论133
习题134
参考文献134
第10章K近邻分类模型137
101K近邻算法138
1011K近邻算法问题表示138
1012K近邻分类算法139
1013K近邻分类算法的理论错误率140
102距离加权最近邻算法141
103K近邻算法加速策略142
104kd树143
105K近邻算法中的参数问题144
延伸阅读145
习题145
参考文献145
第11章线性分类模型147
111判别函数和判别模型147
112线性判别函数148
113线性感知机算法151
1131感知机数据表示151
1132感知机算法的归类判据152
1133感知机分类算法153
114支持向量机156
1141线性可分支持向量机156
1142近似线性可分支持向量机159
1143多类分类问题162
讨论164
习题165
参考文献166
第12章对数线性分类模型167
121Softmax回归167
122Logistic回归170
讨论172
习题173
参考文献173
第13章贝叶斯决策175
131贝叶斯分类器175
132朴素贝叶斯分类176
1321最大似然估计178
1322贝叶斯估计181
133最小化风险分类183
134效用最大化分类185
讨论185
习题186
参考文献186
第14章决策树187
141决策树的类表示187
142信息增益与ID3算法192
143增益比率与C45算法194
144Gini指数与CART算法195
145决策树的剪枝196
讨论197
习题197
参考文献198
第15章多类数据降维199
151有监督特征选择模型199
1511过滤式特征选择200
1512包裹式特征选择201
1513嵌入式特征选择201
152有监督特征提取模型202
1521线性判别分析202
1522二分类线性判别分析问题202
1523二分类线性判别分析203
1524二分类线性判别分析优化算法205
1525多分类线性判别分析205
延伸阅读207
习题207
参考文献207
第16章多类数据升维:核方法209
161核方法209
162非线性支持向量机210
1621特征空间210
1622核函数210
1623常用核函数212
1624非线性支持向量机212
163多核方法213
讨论215
习题215
参考文献216
第17章多源数据学习217
171多源数据学习的分类217
172单类多源数据学习217
1721完整视角下的单类多源数据学习218
1722不完整视角下的单类多源数据学习220
173多类多源数据学习221
174多源数据学习中的基本假设222
讨论222
习题223
参考文献223
后记225
索引229
— 没有更多了 —
以下为对购买帮助不大的评价