代数学方法
代数学方法(第一卷)基础架构
¥
118
全新
仅1件
作者李文威 著
出版社高等教育出版社
出版时间2018-11
版次1
装帧平装
上书时间2023-10-27
商品详情
- 品相描述:全新
图书标准信息
-
作者
李文威 著
-
出版社
高等教育出版社
-
出版时间
2018-11
-
版次
1
-
ISBN
9787040507256
-
定价
99.00元
-
装帧
平装
-
开本
16开
-
纸张
胶版纸
-
页数
224页
- 【内容简介】
-
本书主要目的是介绍代数学中的基本结构,着眼于基础数学研究的实际需求。全书既包括关于群、环、模、域等结构的标准内容,也涉及范畴和赋值理论,在恪守体系法度的同时不忘代数学和其他数学领域的交融。本书可供具有一定基础的数学专业本科生和研究生作为辅助教材、参考书或自学读本之用。
- 【目录】
-
导言
第一章 集合论
1.1 ZFC 公理一览
1.2 序结构与序数
1.3 超穷递归及其应用
1.4 基数
1.5 Grothendieck 宇宙
习题
第二章 范畴论基础
2.1 范畴与态射
2.2 函子与自然变换
2.3 函子范畴
2.4 泛性质
2.5 可表函子
2.6 伴随函子
2.7 极限
2.8 完备性
习题
第三章 幺半范畴
3.1 基本定义
3.2 严格性与融贯定理
3.3 辫结构
3.4 充实范畴
3.5 2-范畴一瞥
习题
第四章 群论
4.1 半群, 幺半群与群
4.2 同态和商群
4.3 直积, 半直积与群扩张
4.4 群作用和计数原理
4.5 Sylow 定理
4.6 群的合成列
4.7 可解群与幂零群
4.8 自由群
4.9 对称群
4.10 群的极限和完备化
4.11 范畴中的群
习题
第五章 环论初步
5.1 基本概念
5.2 几类特殊的环
5.3 交换环初探
5.4 间奏: M?bius 反演
5.5 环的极限与完备化
5.6 从幺半群环到多项式环
5.7 唯一分解性
5.8 对称多项式入门
习题
第六章 模论
6.1 基本概念
6.2 模的基本操作
6.3 自由模
6.4 向量空间
6.5 模的张量积
6.6 环变换
6.7 主理想环上的有限生成模
6.8 正合列入门
6.9 投射模, 内射模, 平坦模
6.10 链条件和模的合成列
6.11 半单模
6.12 不可分模
习题
第七章 代数初步
7.1 交换环上的代数
7.2 整性, 有限性和Frobenius 定理
7.3 代数的张量积
7.4 分次代数
7.5 张量代数
7.6 对称代数和外代数
7.7 牛刀小试: Grassmann 簇
7.8 行列式, 迹, 判别式
习题
第八章 域扩张
8.1 扩张的几种类型
8.2 代数闭包
8.3 分裂域和正规扩张
8.4 可分性
8.5 本原元素定理
8.6 域扩张中的范数与迹
8.7 纯不可分扩张
8.8 超越扩张
8.9 张量积的应用
习题
第九章 Galois 理论
9.1 有限Galois 对应
9.2 无穷Galois 对应
9.3 有限域
9.4 分圆域
9.5 正规基定理
9.6 Kummer 理论
9.7 根式解判准
9.8 尺规作图问题
习题
第十章 域的赋值
10.1 滤子
10.2 Krull 赋值与完备化
10.3 域上的赋值
10.4 绝对值, 局部域和整体域
10.5 个案研究: 单位闭圆盘
10.6 一般扩域的赋值
10.7 代数扩域的赋值
10.8 完备域中求根
10.9 Witt 向量
习题
参考文献
符号索引
名词索引暨英译
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价