• 几何分析手册(第2卷)
  • 几何分析手册(第2卷)
  • 几何分析手册(第2卷)
  • 几何分析手册(第2卷)
  • 几何分析手册(第2卷)
  • 几何分析手册(第2卷)
  • 几何分析手册(第2卷)
  • 几何分析手册(第2卷)
  • 几何分析手册(第2卷)
  • 几何分析手册(第2卷)
21年品牌 40万+商家 超1.5亿件商品

几何分析手册(第2卷)

99.8 九品

仅1件

北京海淀
认证卖家担保交易快速发货售后保障

作者[美国]季理真 编

出版社高等教育出版社

出版时间2010-04

版次1

装帧精装

货号28区新屋架1层外

上书时间2024-07-06

师生书店

十七年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
实物拍照,正版无勾画
图书标准信息
  • 作者 [美国]季理真 编
  • 出版社 高等教育出版社
  • 出版时间 2010-04
  • 版次 1
  • ISBN 9787040288834
  • 定价 78.00元
  • 装帧 精装
  • 开本 16开
  • 纸张 铜版纸
  • 页数 431页
  • 字数 690千字
  • 正文语种 英语
【内容简介】
  GeometricAnalysiscombinesdifferentialequationsanddifferentialgeometry.Animportantaspectistosolvegeometricproblemsbystudyingdifferentialequations.BesidessomeknownlineardifferentialoperatorssuchastheLaplaceoperator,manydifferentialequationsarisingfromdifferentialgeometryarenonlinear.AparticularlyimportantexampleistheIVlonge-Ampereequation;Applicationstogeometricproblemshavealsomotivatednewmethodsandtechniquesindifferen-rialequations.Thefieldofgeometricanalysisisbroadandhashadmanystrikingapplications.Thishandbookofgeometricanalysisprovidesintroductionstoandsurveysofimportanttopicsingeometricanalysisandtheirapplicationstorelatedfieldswhichisintendtobereferredbygraduatestudentsandresearchersinrelatedareas.
【目录】
HeatKernelsonMetricMeasureSpaceswithRegularVolumeGrowth
AlexanderGriqoryan
1Introduction
1.1HeatkernelinRn
1.2HeatkernelsonRiemannianmanifolds
1.3HeatkernelsoffractionalpowersofLaplacian
1.4Heatkernelsonfractalspaces
1.5Summaryofexamples
2Abstractheatkernels
2.1Basicdefinitions
2.2TheDirichletform
2.3Identifyinginthenon-localcase
2.4Volumeofballs
3Besovspaces
3.1BesovspacesinRn
3.2Besovspacesinametricmeasurespace
3.3EmbeddingofBesovspacesintoHSlderspaces.
4Theenergydomain
4.1Alocalcase
4.2Non-localcase
4.3Subordinatedheatkernel
4.4Besselpotentialspaces
5Thewalkdimension
5.1Intrinsiccharacterizationofthewalkdimension
5.2Inequalitiesforthewalkdimension
6Two-sidedestimatesinthelocalcase
6.1TheDirichletforminsubsets
6.2Maximumprinciples
6.3Atailestimate
6.4Identifyinginthelocalcase
References
AConvexityTheoremandReducedDelzantSpacesBongH.Lian,BailinSong
1Introduction
2Convexityofimageofmomentmap
3Rationalityofmomentpolytope
4RealizingreducedDelzantspaces
5ClassificationofreducedDelzantspaces
References
LocalizationandsomeRecentApplications
BongH.Lian,KefengLiu
1Introduction
2Localization
3Mirrorprinciple
4Hori-Vafaformula
5TheMarino-VafaConjecture
6Twopartitionformula
7Theoryoftopologicalvertex
8Gopakumar-Vafaconjectureandindicesofellipticoperators..
9TwoproofsoftheELSVformula
10AlocalizationproofoftheWittenconjecture
11Finalremarks
References
Gromov-WittenInvariantsofToricCalabi-YauThreefoldsChiu-ChuMelissaLiu
1Gromov-WitteninvariantsofCalabi-Yau3-folds
1.1SymplecticandalgebraicGromov-Witteninvariants
1.2Modulispaceofstablemaps
1.3Gromov-WitteninvariantsofcompactCalabi-Yau3-folds
1.4Gromov-WitteninvariantsofnoncompactCalabi-Yau3-folds
2Traditionalalgorithminthetoriccase
2.1Localization
2.2Hodgeintegrals
3Physicaltheoryofthetopologicalvertex
4Mathematicaltheoryofthetopologicalvertex
4.1Locallyplanartrivalentgraph
4.2FormaltoricCalabi-Yau(FTCY)graphs
4.3Degenerationformula
4.4Topologicalvertex"
4.5Localization
4.6Framingdependence
4.7Combinatorialexpression
4.8Applications
4.9Comparison
5GW/DTcorrespondencesandthetopologicalvertex
Acknowledgments
References
SurveyonAffineSpheres
JohnLoftin
1Introduction
2Affinestructureequations
3Examples
4Two-dimensionalaffinespheresandTiteicasequation
5Monge-Ampreequationsandduality
6Globalclassificationofaffinespheres
7Hyperbolicaffinespheresandinvariantsofconvexcones
8Projectivemanifolds
9Affinemanifolds
10Affinemaximalhypersurfaces
11Affinenormalflow
References
ConvergenceandCollapsingTheoremsinRiemannianGeometry
XiaochunRong
Introduction
1Gromov-Hausdorffdistanceinspaceofmetricspaces
1.1TheGromov-Hausdorffdistance
1.2Examples
1.3AnalternativeformulationofGH-distance
1.4Compactsubsetsof(Met,dGH)
1.5EquivariantGH-convergence
1.6PointedGH-convergence
2Smoothlimits-fibrations
2.1Thefibrationtheorem
2.2Sectionalcurvaturecomparison
2.3Embeddingviadistancefunctions
2.4Fibrations
2.5Proofoftheorem2.1.1
2.6Centerofmass
2.7Equivariantfibrations
2.8Applicationsofthefibrationtheorem
3Convergencetheorems
3.1Cheeger-Gromovsconvergencetheorem
3.2Injectivityradiusestimate
3.3Someellipticestimates
3.4Harmonicradiusestimate
3.5Smoothingmetrics
4Singularlimits-singularfibrations
4.1Singularfibrations
4.2Controlledhomotopystructurebygeometry
4.3The∏2-finitenesstheorem
4.4Collapsedmanifoldswithpinchedpositivesectionalcurvature
5Almostflatmanifolds
5.1Gromovstheoremonalmostflatmanifolds
5.2TheMargulislemma
5.3Flatconnectionswithsmalltorsion
5.4Flatconnectionwithaparalleltorsion
5.5Proofs——partI
5.6Proofs——partII
5.7Refinedfibrationtheorem
References
GeometricTransformationsandSolitonEquations
Chuu-LianTerng"
1Introduction
2Themovingframemethodforsubmanifolds
3LinecongruencesandBacklundtransforms
4SpherecongruencesandRibaucourtransforms
5Combescuretransforms,O-surfaces,andk-tuples
6FrommovingframetoLaxpair
7Solitonhierarchiesconstructedfromsymmetricspaces
8TheU-systemandtheGauss-Codazziequations
9Loopgroupactions
10Actionofsimpleelementsandgeometrictransforms
References
AffineIntegralGeometryfromaDifferentiableViewpoint
DeaneYang
1Introduction
2Basicdefinitionsandnotation
2.1Lineargroupactions
3Objectsofstudy
3.1Geometricsetting
3.2Convexbody
3.3Thespaceofallconvexbodies
3.4Valuations
4Overallstrategy
5Fundamentalconstructions
5.1Thesupportfunction
5.3Thepolarbody
5.4TheinverseGaussmap
5.5Thesecondfundamentalform
5.6TheLegendretransform
5.7ThecurvaturefunctionThehomogeneouscontourintegral
6.1Homogeneousfunctionsanddifferentialforms
6.2Thehomogeneouscontourintegralforadifferentialform
6.3Thehomogeneouscontourintegralforameasure
6.4Homogeneousintegralcalculus
7Anexplicitconstructionofvaluations
7.1Duality
7.2Volume
8Classificationofvaluations
9Scalarvaluations
9.1SL(n)-invariantvaluations
9.2Hugstheorem
10ContinuousGL(n)-homogeneousvaluations
10.1Scalarvaluations
10.2Vector-valuedvaluations
11Matrix-valuedvaluations.
11.1TheCramer-Raoinequality
12Homogeneousfunction-andconvexbody-valuedvaluations.
13Questions
References
ClassificationofFakeProjectivePlanes
Sai-KeeYeung
1Introduction
2Uniformizationoffakeprojectiveplanes
3Geometricestimatesonthenumberoffakeprojectiveplanes.
4Arithmeticityoflatticesassociatedtofakeprojectiveplanes.
5CovolumeformulaofPrasad
6Formulationofproof
7Statementsoftheresults
8Furtherstudies
References
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

实物拍照,正版无勾画
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP