托马斯微积分(上册)
¥
11
2.4折
¥
45
八五品
仅1件
作者[美]吉尔当诺、芬尼 著
出版社高等教育出版社
出版时间2004-07
版次1
装帧平装
上书时间2024-10-28
商品详情
- 品相描述:八五品
-
有做题笔记稍有
图书标准信息
-
作者
[美]吉尔当诺、芬尼 著
-
出版社
高等教育出版社
-
出版时间
2004-07
-
版次
1
-
ISBN
9787040144246
-
定价
45.00元
-
装帧
平装
-
开本
16开
-
纸张
胶版纸
-
页数
606页
-
正文语种
简体中文,英语
- 【内容简介】
-
《托马斯微积分》(上)(第10版影印版)从Pearson出版公司引进,是一本颇具影响的教材。50多年来,该书平均每4至5年就有一个新版面世,每版较之先前版本都有不少改进之处,体现了这是一部锐意革新的教材;与此同时,该书的一些基本特色始终注意保持且有所增强,说明它又是一部重视继承传统的教材。
- 【目录】
-
Preliminaries
1Lines1
2FunctionsandGraphs10
3ExponentialFunctions24
4InverseFunctionsandLogarithms31
5TrigonometricFunctionsandTheirlnverses44
6ParametricEquations60
7ModelingChange67
QUESTIONSTOGUIDEYOURREVIEW76
PRACTICEEXERCISES77
ADDITIONALEXERCISES:THEORY.EXAMPS.APPUCATIONS80
1LimitsandContinuity
1.1RatesofChangeandLimi85
1.2FindingLimiandOne-SidedLimits99
1.3LimiInvolvingInfinity112
1.4Continuity123
1.5TangentLines134
QUESTIONSTOGUIDEYOURREVIEW141
PRACTICEEXERCISES142
ADDITIONALEXERCISES:THEORY.EXAMPLES.APPLICATIONS143
2DeriVatives
2.1TheDerivativeasaFunction147
2.2TheDerivativeasaRateofChange160
2.3DerivativesofProducts.Quotients.andNegativePowers173
2.4DerivativesofTrigonometricFunctions179
2.5TheChainRuleandParametricEquations187
2.6ImplicitDifierentiation198
2.7RelatedRates207
QUESTIONSTOGUIDEYOURREVIEW216
PRACTICEEXERCISES217
ADDITIONALEXERCISES:THEORY.EXAMPLES.APPUCATIONS221
3ApplicationsofDerivatives
3.1ExtremeValuesofFunctions225
3.2TheMcanValueTheoremandDifierentialEquations237
3.3TheShapeofaGraph245
3.4GraphicalSolutionsofAutonomousDifferentialEquations257
3.5ModelingandOptimization266
3.6LinearizationandDifferentials283
3.7Newton’SMethod297
QUESTIONSTOGUIDEYOURREVIEW305
PRACTICEEXERCISES305
ADDITIONALEXERCISES:THEORY,EXAMPLES.APPLICATIONS309
4Integration
4.1IndefiniteIntegrals,DifferentialEquations.andModeling313
4.2IntegralRules;IntegrationbySubstitution322
4.3EstimatingwithFiniteSums329
4.4RicmannSumsandDefiniteIntegrals340
4.5TheMcanValueandFundamentaITheorems351
4.6SubStitutioninDefiniteIntegrals364
4.7NumericalIntegration373
QUESTIONSTOGUIDEYOURREVIEW384
PRACTICEEXERCISES385
ADDITIONALEXERCISES:THEORY.EXAMPLES.APPLICATIONS389
5ApplicationsofIntegrals
5.1VolumesbySlicingandRotationAboutanAxis393
5.2ModelingVolumeUsingCylindricalShells406
5.3LengthsofPlaneCurves413
5.4Springs.Pumping.andLifting421
5.5FluidForces432
5.6MomentsandCentersofMass439
QUESTIONSTOGUIDEYOURREVIEW451
PRACTICEEXERCISES451
ADDITIONALEXERCISES:THEORY.EXAMPLES.APPLICATIONS454
6TranscendentalFunctionsandDifferentialEquations
6.1Logarithms457
6.2ExponentialFunctions466
6.3D——e|rivativesofInverseTrigonometricFunctions;Integrals477
6.4First.OrderSeparableDifferentialEquations485
6.5LinearFirSt.OrderDifferentialEquations499
6.6Euler‘SMethod;PoplulationModels507
6.7HyperbolicFunctions520
QUESTIONSTOGUIDEYOURREVIEW530
PRACTICEEXERCISES531
ADDmONALEXERCISES:THEORY.EXAMPLES.APPLICATIONS535
7IntegrationTechniques,LH6pital’sRule,andImproperIntegrals
7.1BasicIntegrationFormulas539
7.2IntegrationbyParts546
7.3PartialFractions555
7,4TrigonometricSubstitutions565
7.5IntegralTables.ComputerAlgebraSystems.and
MonteCarioIntegration570
7.6LHSpitarSRule578
7.7ImproperIntegrals586
QUESTIONSTOGUIDEYOURREVIEW600
PRACTICEEXERCISES601
ADDITIONALEXERCISES:THEORY.EXAMPLES.APPLICATIONS603
8InfiniteSeries
8.1LimisofSequencesofNumbers608
8.2Subsequences.BoundedSequences.andPicardSMethod619
8.3InfiniteSeries627
8.4SeriesofNonnegativeTerms1639
8.5AlternatingSeries。AbsoluteandConditionalConvergence651
8.6PowerSeries660
8.7TaylorandMaclaurinSeries669
8.8ApplicationsofPowerSeries683
8.9FourierSeries691
8.10FourierCosineandSineSeries698
QUESTIONSTOGUIDEYOURREVIEW707
PRACTICEEXERCISES708
ADDITIONALEXERCISES:THEORY,EXAMPS.APPLICATIONS711
9VectorsinthePlaneandPolarFunctions
9.1VectorsinthePlane717
9.2DotProducts728
9.3Vector-ValuedFunctions738
9.4ModelingProjectileMotion749
9.5PolarCoordinatesandGraphs761
9.6CalculusofPolarCuryes770
QUESTIONSTOGUIDEYOURREVIEW780
PRACTICEEXERCISES780
ADDITIONALEXERCISES:THEORY.EXAMPLES.APPUCATIONS784
10VectorsandM0tioninSpace
1O.1Cartesian(Rectangular)CoordinatesandVectorsinSpace787
10.2DotandCrossProducts796
10.3LinesandPlanesinSpace807
10.4cylindersandOuadricSurfaCes816
10.5Vector-ValuedFunctionsandSpaceCurves825
10.6ArcLengthandtheUnitTangentVectorT838
10.7TheTNBFrame;TangentialandNormalComponentsofAcceleration
10.8PlanetaryMotionandSatellites857
QUESTIONSTOGUIDEYOURREVIEW866
PRACTICEEXERCISES867
ADDITIONALEXERCISES:THEORY.EXAMPLES.APPLICATIONS870
11MultivariableFunctionsand111eirDerivatives
11.1FunctionsofSeveraIVariables873
11.2LimitsandContinuityinHigherDimensions882
11.3PartiaIDerivatives890
11.4TheChainRule902
11.5DirectionaIDerivatives.GradientVectors.andTangentPlanes911
11.6LinearizationandDifierentials925
11.7ExtremeValuesandSaddlePoints936
……
12MultipleIntegrals
13IntegrationinVectorFields
Appendices
点击展开
点击收起
— 没有更多了 —
有做题笔记稍有
以下为对购买帮助不大的评价