• 工程塑性理论及其在金属成形中的应用
21年品牌 40万+商家 超1.5亿件商品

工程塑性理论及其在金属成形中的应用

68.5 4.9折 139 九五品

仅1件

北京通州
认证卖家担保交易快速发货售后保障

作者王仲仁,胡卫龙,苑世剑,王小松 著

出版社高等教育出版社

ISBN9787040505870

出版时间2018-12

版次1

装帧精装

开本16开

纸张胶版纸

页数499页

字数99999千字

定价139元

上书时间2024-06-01

纵列風

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九五品
商品描述
基本信息
书名:工程塑性理论及其在金属成形中的应用
定价:139.00元
作者:王仲仁,胡卫龙,苑世剑,王小松 著
出版社:高等教育出版社
出版日期:2018-12-01
ISBN:9787040505870
字数:900000
页码:499
版次:1
装帧:精装
开本:16开
商品重量:
编辑推荐

内容提要
《工程塑性理论及其在金属成形中的应用(英文版)》是首次由有工程应用背景的教授与专家共同撰写的关于工程塑性理论及其在金属成形中的应用的专著。  《工程塑性理论及其在金属成形中的应用(英文版)》突出基本概念与应用,涵盖了作者们多年的研究成果。章重点介绍了几种屈服准则,包括作者提出的广义屈服准则,明确了应力偏张量与塑性变形的本质联系;第2章列出航天、航空及汽车领域新近研发的众多材料的单向拉伸力学特性;第3章介绍了验证屈服准则与塑性应力应变关系的簿管和薄板实验;第4章介绍了各向异性材料的屈服特性和静水应力与应力状态类型对屈服的影响;第5章介绍了塑性应变增量梯度理论的一般性定理及等效强化状态塑性变形中出现的“软化”现象;第6章介绍了后续塑性变形的几种强化特性;第7章阐述了由Levy-Mises应力应变关系增量理论导出的应力应变顺序对应规律及其实验验证;第8章给出了管材拉拔、缩口、扩口及锥面胀管等工序应力应变分析统一解;第9章为液压成形;0章为体积成形;1章为板料成形。  《工程塑性理论及其在金属成形中的应用(英文版)》不仅为读者提供系统的理论基础,指明解决问题的定性思路,还给出很多定量计算的范例,展示其应力应变分析结果,从总体上看,也扩展了读者的视野。  《工程塑性理论及其在金属成形中的应用(英文版)》可供材料、力学及机械学科的大学教师、研究生以及科研院所和企业研发部门的研究人员阅读。
目录
Preface1 Fundamentals of Classical Plasticity1.1 Stress1.1.1 The Concept of Stress Components1.1.2 Descriptioof the Stress State1.1.2.1 Stresses oaArbitrary Inclined Plane1.1.2.2 Stress Components oaOblique Plane1.1.2.3 Special Stresses1.1.2.4 CommoStress States1.1.3 Stress Tensors and Deviatoric Stress Tensors1.1.4 Mohr Stress Circles1.1.4.1 Mohr Circles for a Two-DimensionaI Stress System1.1.4.2 Mohr Circles for a Three-Dimensional Stress System1.1.5 Equations of Force Equilibrium1.2 Strain1.2.1 Nominal Straiand True Strain1.2.2 StraiComponents as Functions of Infinitesimal Displacements1.2.3 The Mamum Shear Strains and the Octahedral Strains1.2.4 StraiRates and StraiRate Tensors1.2.5 Incompressibility and Chief DeformatioTypes1.3 Yield Criteria1.3.1 The Concept of Yield Criterion1.3.2 Tresca Yield Criterion1.3.3 Mises Yield Criterion1.3.4 TwiShear Stress Yield Criterion1.3.5 Yield Locus and Physical Concepts of Tresca, Mises, and TwiShear Stress Yield Criteria1.3.5.1 Interpretatioof Tresca Yield Criterion1.3.5.2 Interpretatioof TwiShear Stress Yield Criterion1.3.5.3 Interpretatioof Mises Yield Criterion1.4 A General Yield Criterion1.4.1 Representatioof GeneraI Yield Criterion1.4.2 Yield Surface and Physical Interpretation1.4.3 Simplified Yield Criterion1.5 Classical Theory about Plastic Stress-StraiRelation1.5.1 Early Perceptioof Plastic Stress StraiRelations1.5.2 Concept of the Gradient-Based Plasticity and Its Relatiowith Mises Yield Criterion1.5.2.1 Concept of the Plastic Potential1.5.2.2 Physical Interpretatioof the Plastic Potential1.5.2.3 Physical Interpretatioof Mises Yield Functio(Plastic Potential)1.6 Effective Stress, Effective Strain, and Stress Type1.6.1 Effective Stress1.6.2 Effective Strain1.6.3 Stress TypeReferences2 Experimental Research oMaterial Mechanical Properties under Uniaal Tension3 Experimental Research oMechanical Properties of Materials under Non-Uniaal Loading Condition4 Yield Criteria of Different Materials5 Plastic Constitutive Relations of Materials6 Descriptioof Material Hardenability with Different Models7 Sequential Correspondence Law betweeStress and StraiComponents and Its ApplicatioiPlastic DeformatioProcess8 Stress and StraiAnalysis and Experimental Research oTypical Asymmetric Plane Stress-Forming Process9 Shell and Tube Hydroforming10 Bulk Forming11 Sheet FormingIndex
作者介绍

序言
Preface1 Fundamentals of Classical Plasticity1.1 Stress1.1.1 The Concept of Stress Components1.1.2 Descriptioof the Stress State1.1.2.1 Stresses oaArbitrary Inclined Plane1.1.2.2 Stress Components oaOblique Plane1.1.2.3 Special Stresses1.1.2.4 CommoStress States1.1.3 Stress Tensors and Deviatoric Stress Tensors1.1.4 Mohr Stress Circles1.1.4.1 Mohr Circles for a Two-DimensionaI Stress System1.1.4.2 Mohr Circles for a Three-Dimensional Stress System1.1.5 Equations of Force Equilibrium1.2 Strain1.2.1 Nominal Straiand True Strain1.2.2 StraiComponents as Functions of Infinitesimal Displacements1.2.3 The Maximum Shear Strains and the Octahedral Strains1.2.4 StraiRates and StraiRate Tensors1.2.5 Incompressibility and Chief DeformatioTypes1.3 Yield Criteria1.3.1 The Concept of Yield Criterion1.3.2 Tresca Yield Criterion1.3.3 Mises Yield Criterion1.3.4 TwiShear Stress Yield Criterion1.3.5 Yield Locus and Physical Concepts of Tresca, Mises, and TwiShear Stress Yield Criteria1.3.5.1 Interpretatioof Tresca Yield Criterion1.3.5.2 Interpretatioof TwiShear Stress Yield Criterion1.3.5.3 Interpretatioof Mises Yield Criterion1.4 A General Yield Criterion1.4.1 Representatioof GeneraI Yield Criterion1.4.2 Yield Surface and Physical Interpretation1.4.3 Simplified Yield Criterion1.5 Classical Theory about Plastic Stress-StraiRelation1.5.1 Early Perceptioof Plastic Stress StraiRelations1.5.2 Concept of the Gradient-Based Plasticity and Its Relatiowith Mises Yield Criterion1.5.2.1 Concept of the Plastic Potential1.5.2.2 Physical Interpretatioof the Plastic Potential1.5.2.3 Physical Interpretatioof Mises Yield Functio(Plastic Potential)1.6 Effective Stress, Effective Strain, and Stress Type1.6.1 Effective Stress1.6.2 Effective Strain1.6.3 Stress TypeReferences2 Experimental Research oMaterial Mechanical Properties under Uniaxial Tension3 Experimental Research oMechanical Properties of Materials under Non-Uniaxial Loading Condition4 Yield Criteria of Different Materials5 Plastic Constitutive Relations of Materials6 Descriptioof Material Hardenability with Different Models7 Sequential Correspondence Law betweeStress and StraiComponents and Its ApplicatioiPlastic DeformatioProcess8 Stress and StraiAnalysis and Experimental Research oTypical Axisymmetric Plane Stress-Forming Process9 Shell and Tube Hydroforming10 Bulk Forming11 Sheet FormingIndex

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP