大数据挖掘与统计机器学习
¥
10.73
2.6折
¥
42
九五品
仅1件
作者吕晓玲 宋捷
出版社中国人民大学出版社
ISBN9787300264066
出版时间2019-01
版次1
装帧平装
开本16开
纸张胶版纸
页数332页
字数99999千字
定价42元
上书时间2024-04-26
商品详情
- 品相描述:九五品
- 商品描述
-
基本信息
书名:大数据挖掘与统计机器学习
定价:42.00元
作者:吕晓玲 宋捷
出版社:中国人民大学出版社
出版日期:2019-01-01
ISBN:9787300264066
字数:508000
页码:332
版次:2
装帧:平装
开本:16开
商品重量:
编辑推荐
内容提要
本课程的教学内容主要包括聚类、关联、降维、变量选择、分类与预测、集成算法、图模型与推荐系统等。每一部分都是本课程授课的主要内容,都力求深入浅出,精讲细讲,不光讲解各种方法的过程与原理,还要加强学生对各种方法的深入理解。
目录
章 概述
1.1 名词演化
1.2 基本内容
1.3 数据智慧
第2章 线性回归方法
2.1 多元线性回归
2.2 压缩方法:岭回归与Lasso
2.3 Lasso模型的求解与理论性质
2.4 损失函数加罚的建模框架
2.5 上机实践
2.6 上机实践:Python
第3章 线性分类方法
3.1 分类问题综述与评价准则
3.2 Logistic回归
3.3 线性判别
3.4 上机实践
3.5 上机实践:Python
第4章 模型评价与选择
4.1 基本概念
4.2 。理论方法
4.3 数据重利用方法
4.4 上机实践
4.5 上机实践:Python
第5章 决策树与组合方法
5.1 决策树
5.2 Bagging
5.3 Boosting
5.4 随机森林
5.5 上机实践
5.6 上机实践:Python
第6章 神经网络与深度学习
6.1 神经网络
6.2 深度信念网
6.3 卷积神经网络
6.4 上机实践
6.5 上机实践:Python
第7章 支持向量机
7.1 线性可分支持向量机
7.2 软间隔支持向量机
7.3 一些拓展
7.4 上机实践
7.5 上机实践:Python
第8章 聚类分析
8.1 基于距离的聚类
8.2 基于模型和密度的聚类
8.3 稀疏聚类
8.4 双向聚类
8.5 上机实践
8.6 上机实践:Python
第9章 推荐系统 9.1 基于邻居的推荐
9.2 潜在因子与矩阵分解算法
9.3 上机实践
9.4 上机实践:Python
0章 大数据案例分析
10.1 智能手机用户监测数据案例分析
10.2 美国航空数据案例分析
10.3 美国纽约公共自行车数据案例分析
参考文献
作者介绍
序言
— 没有更多了 —
以下为对购买帮助不大的评价