机器学习及其硬件实现
正版保障 假一赔十 电子发票
¥
63.8
6.4折
¥
99
全新
库存4件
作者(日) 高野茂之著
出版社机械工业出版社
ISBN9787111739500
出版时间2024-01
装帧平装
开本其他
定价99元
货号4525427
上书时间2024-12-27
商品详情
- 品相描述:全新
- 商品描述
-
目录
本书主要讨论机器学习、神经形态计算和神经网络的理论及应用, 专注于机器学习加速器和硬件开发。本书从传统的微处理架构发展历程入手, 介绍在后摩尔定律和后丹纳德微缩定律下, 新型架构的发展趋势和影响执行性能的各类衡量指标。然后从应用领域、ASIC和特定领域架构三个角度展示了设计特定的硬件实现所需考虑的诸多因素。接着结合机器学习开发过程及其性能提升方法 (如模型压缩、编码、近似、优化等) 介绍硬件实现的细节。最后给出机器学习硬件实现的大量案例, 展示机器如何获得思维能力。
内容摘要
本书主要讨论机器学习、神经形态计算和神经网络的理论及应用,专注于机器学习加速器和硬件开发。本书从传统的微处理架构发展历程入手,介绍在后摩尔定律和后丹纳德微缩定律下,新型架构的发展趋势和影响执行性能的各类衡量指标。然后从应用领域、ASIC和特定领域架构三个角度展示了设计特定的硬件实现所需考虑的诸多因素。接着结合机器学习开发过程及其性能提升方法(如模型压缩、编码、近似、优化等)介绍硬件实现的细节。zui后给出机器学习硬件实现的大量案例,展示机器如何获得思维能力。本书适合有一定机器学习基础并希望了解更多技术发展趋势的读者阅读。
主编推荐
1. 涵盖多种机器学习硬件和平台,以及各类机器学习硬件加速器解决方案,读者可根据需要将这些解决方案应用于合适的机器学习算法。
2. 对现有研究成果和产品进行回顾,分析不同的机器学习模型,并通过FPGA和ASIC方法解释目标机器学习模型的设计。
3. 对硬件设计的未来方向进行展望,涉及传统微处理器、GPU、FPGA和ASIC等,帮助读者了解现代研究趋势,进而实现自己的设计。
— 没有更多了 —
以下为对购买帮助不大的评价