数据分析原理
正版保障 假一赔十 电子发票
¥
52.88
5.9折
¥
89
全新
库存23件
作者周文全, 黄怡媛, 马炯雄著
出版社电子工业出版社
ISBN9787121444531
出版时间2023-01
装帧平装
开本其他
定价89元
货号4234309
上书时间2024-12-18
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
"周文全,暨南大学毕业,10多年工作经验,先后在中国电信、阿里巴巴、腾讯从事数据分析工作,亿级App商业增长负责人。 微信公众号“数据分析学习之道” 运营者,教授所有渠道畅销课“Spring数据分析思维案例实战”。 优秀讲师,创作型职场从业者,擅长思维发散、问题分析与解决、探索新技术。 黄怡媛,本科为暨南大学经济学专业,硕士为英国巴斯大学创业与管理专业。毕业后在腾讯、阿里巴巴等国内一线互联网企业工作,参与过亿级toC产品的运营,也参与过toB产品从0到1的搭建,有5年多的产品运营和数据运营经验。擅长业务分析和策略制定,关注商业和科技行业动向,乐于探索新领域。 马炯雄,本科为广东工业大学信息管理与信息系统专业。毕业后在腾讯工作,有超过十年的产品运营和数据分析经验,对问题的拆解和数据指标体系的搭建有自己独特的见解和方法。"
目录
本书系统地介绍了数据如何始于业务、取于业务、用于业务。既有扎实的理论铺设, 又有具体的案例支撑, 通俗易懂地回答了数据“怎么来”和“怎么用”的问题。同时, 本书总结出了解决业务分析难题的六大步骤, 包括对最终数据分析产生关键影响的数据源的选取方法, 以及通过对业务模块的判断确定分析方法的适用场景, 最终推演、验证、分析出结论, 并选择最优的分析结果展现方式, 让数据分析全过程形成闭环。
主编推荐
大厂一线数据专家的经验提炼,系统地介绍了数据如何始于业务、取于业务、用于业务。既有扎实的理论铺设,又有具体的案例支撑,通俗易懂地回答了数据“怎么来”和“怎么用”的问题。如何保证业务数据的统一、完整、可复用,以及建立数据驱动、持续优化的闭环过程,从这本书开始学习吧!
精彩内容
为什么写本书 本书作者在大学的数据分析课程学习中,无意中发现了张筑生老师编著的《数学分析新讲》一书,当时觉得经典,认为所有给读者看的、带有普及教育意义的图书都应该用心写,能够真正解决读者学困惑,让人受益匪浅。大学毕业之后,笔者一直从事数据分析工作,对该行业的现状、痛点、未来发展有了更加清晰的认识,比如大部分公司的数据分析师都是做提数、数据校验、日/周/月报工作的,并不知道如何去分析、解决业务问题;再如,很多分析师遇到一个业务问题,无法下手,很迷茫。这些都是要解决的问题,笔者也看过市面上的一些数据分析图书,这些书对业务问题的讲解不够透彻。回想大学时张老师的那本书,笔者决定把自己在企业多年工作的经验进行分享,让该行业的人少 走弯路,快速找到捷径。所以,笔者联合了其他两位在数据分析行业有着多年经验的作者一起创作了本书。 本书 与一般的数据分析图书不同,笔者在写作本书的时候尽量用案例来阐述每一个想表达的观点,对一些基础的概念没有做过多篇幅的介绍,更多的是讲分析方法。这样来定位是因为市面上讲概念的图书太多了,读者既然去买书,是需要一些有价值、可以直接应用的内容。 同时,细心的读者会发现本书第1~6章是一个连贯的过程,即如何有效地解决一个问题,这套逻辑同样适用于生活中遇到的困难。与麦肯锡的那几本概念书不同,这里笔者希望紧贴业务场景,提供更多干货。 另外,笔者尽量不去讲一些算法公式、代码等“高大上”的概念,因为这些内容只有在实际工作中去感受和抽象提炼才是快、有效的;如果读者看完忘了,那还不如不看。对入门的读者来说,希望他们觉得数据分析很有趣,而不是晦涩难懂。 读者定位 数据分析从业者,即使你工作了5年、10年,本书同样适合你。 数据分析爱好者,相信你看了这些案例之后,会更加有兴趣,甚可以尝试跳槽。 大学相关专业师生,可以结合本书的案例来学习。 学习建议 如果当前你对数据分析的相关知识了解得不多,那么建议你从本书第1章开始,先快速看完一遍,再精读,同时要找更多的人来交流、探讨。如果当前你对数据分析的相关知识已经有了的了解,建议选择地阅读本书,看自己想知道的内容,这样效率更高,同时可以找作者交流、探讨。 如果当前你对数据分析的相关知识已经很了解,建议看一些案例,拓展自己的视野。 致谢 感谢大数据行业布道者邓凯、《活用数据:驱动业务的数据分析实战》作者陈哲老师的鼓励与支持,让笔者下定决心写本书。 感谢电子工业出版社张慧敏对书稿提出的修改建议和在写作过程中的督促与支持。 感谢笔者的家人,没有家人的爱与支持、理解与付出,没有这本书。 作者:周文全
媒体评论
"与学习数据分析相比,我们更要理解如何用数据分析和解决问题,这才是数据分析的核心价值。一组冰冷的数据、图表、算法没有任何价值可言,但如果数据被注入了业务场景、路径、思维等,那么带来的价值是不是很高呢?答案是一定的。 令人失望的是,目前市面上大多数课程、图书仍以技术、工具、算法为核心,太注重“术”的培养,这是数据分析好学、容易学的地方,而对于“道”的讲解少之又少。本书内容更多的是对“道”的讲解,业务场景丰富、案例实战性强、思维模型更是独出心裁,相信会让你对数据分析的理解更上一层楼! ——邓凯 爱数圈创始人 大部分计算机专业的同学在毕业后从事软件开发工作,本书第一作者在大学期间就对数据分析表现出极大的兴趣,在人工智能、数据挖掘、神经网络方面均有不错的知识积累,毕业后从事十余年的数据分析工作,通过大量真实的工作场景培养出基于业务需求主动思考和批判性思维的工作习惯。数据分析是一项通用的职场能力,相信通过本书的学习和应用,你将具有更好的职业发展前景! ——杨天奇 暨南大学计算机系教授 数据分析是企业管理和业务创新的重要工具,通过数据挖掘业务本质,能够提供准确决策,助力指标增长。近几年互联网从用户增长到私域流量,都是对数据的分析、应用、运营。本书作者具有强大的数据分析“内功”,剖析工作中的真实场景,从实践出发提炼理论,帮助职场人员更好地提升! ——葛明 腾讯通讯业务部GM 大数据是社会管理、企业管理的重要手段。数据天生存在,关键是收集数据、整理和规范数据,进而通过数据预测未来,这样才能实现真正地用好数据。本书有理有据,案例丰富,可读性强,值得多看几遍,读者将会收获良多! ——倪良 阿里巴巴风控大数据创始人 因为缺乏对数据本身的深刻理解,不少有着深厚技术积累的专家并不能成为一名出色的数据分析师。本书作者长期从事数据分析工作,都是所在行业出色的数据分析专家,他们通过这本呕心沥血之作教会我们如何从业务出发,在驱动业务成长的关键环节用好数据,解决好业务发展中的关键问题。 ——张心瞻 中国电信翼支付高级总监 一方面,数据分析工具简单易用,业务人员很容易上手学习;另一方面,人工智能和推荐算法实现了常规报表的自动化和可视化。前者更懂业务,后者更具效率,数据分析师难道只能成为“提数师”吗?这个问题让很多数据分析师迷茫和困惑。 在一线从业十余年的数据分析专家周文全老师通过大量真实的工作场景和实战案例系统地教你如何破局。阅读本书,你会对业务理解、目标拆分和指标建立有一个全新的认识,培养基于业务需求主动思考和具有批判性思维的工作习惯,同时本书对数据的获取、分析和展示方法也有细致讲解,既启发你如何想,又教你如何做。 相信通过本书的学习和应用,作为数据分析师的你将会在组织中发挥更大的价值,具有更强的职场竞争力! ——陈哲 首都经济贸易大学副教授, 《数据分析:企业的贤内助》和《活用数据:驱动业务的数据分析实战》作者 数据是驱动业务增长的重要方法,本书从懂业务、定指标、选方法、提数据、做测试、得结果、做展示七大方面进行了详细阐述,具备典型性和应用性,能在数据驱动业务增长的实际应用方面为读者提供很好的思路。 ——熊晓飞 高级算法专家 我们常讲“要用事实说话”,数据就是事实最直接的展现形式。业务成效好不好,要用数据说话。本书系统地介绍了数据如何始于业务、取于业务、用于业务。既有扎实的理论铺设,又有具体的案例支撑,通俗易懂地回答了数据“怎么来”和“怎么用”的问题。如何保证业务数据的统一、完整、可复用,以及建立数据驱动、持续优化的闭环过程,从这本书开始学习吧! ——邱韬奋 建信金融科技有限责任公司支付专家 从业务出发,制定数据指标体系;从数据视角反哺业务,驱动业绩增长。本书将理论与案例相结合,内容深入浅出,帮助读者构建数据思维,使读者掌握常用的数分方法,并指导具体落地运用,结构完整,内容翔实,是一本难得的佳作。 ——谢清森 唯品会创新项目部前负责人, 本书跳出具体的数据分析方法,回归本源,介绍如何用数据分析来解决实际的业务问题。作者结合自身的实际经验,帮助从业者从业务视角思考和审视数据分析日常工作,体系框架严谨,方法务实落地,无论是资深数据分析师,还是数据分析新人都会有所收获,非常值得深入学习。 ——李希仁 北京云链金汇数字科技有限公司CTO 本书是一本的以案例分析为主的数据分析书。它不是晦涩难懂的概念书,而是适合不同层次数据分析人士提高分析思维的实战书,更是作者多年大厂数据分析实践经验的汇总。因此,强烈建议计划学习数据分析及想要提高数据分析思维的同学阅读。 ——马文豪(@小码哥) 《零基础轻松学Python》作者"
— 没有更多了 —
以下为对购买帮助不大的评价