• 小波十讲
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

小波十讲

29.09 3.7折 79 九品

仅1件

北京东城
认证卖家担保交易快速发货售后保障

作者[比利时]英格里德·道贝切斯(Ingrid Daubechies) 著;贾洪峰 译

出版社人民邮电出版社

出版时间2017-01

版次1

装帧平装

货号A5

上书时间2024-12-23

图书-天下的书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [比利时]英格里德·道贝切斯(Ingrid Daubechies) 著;贾洪峰 译
  • 出版社 人民邮电出版社
  • 出版时间 2017-01
  • 版次 1
  • ISBN 9787115438980
  • 定价 79.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 333页
  • 字数 437千字
  • 正文语种 简体中文
  • 丛书 图灵数学·统计学丛书
【内容简介】
本书是数学界公认的经典名著,包含了20世纪80年代以来世界上有关小波分析的最先进成果,全面论述了小波分析的主要原理和方法,并给出了大量实践例题,描述了小波的许多应用。

本书适合工程数学、信号分析、通信等方向的科研人员和高等院校相关专业师生。
【作者简介】
Ingrid Daubechies,2011年起受聘为杜克大学数学系教授,2004年至2011年受聘为普林斯顿大学数学系和应用数学与计算数学研究中心教授。国际数学联盟首位女性主席。曾在布鲁塞尔的佛雷大学理论物理系工作,后任著名的AT&T贝尔实验室高级技术员,是卢特格大学数学系的教授。曾获得1997年Ruth Lyttle Satter数学奖。被频繁应邀到世界各地作学术报告,发表了大量学术论文,出版了许多学术著作。
【目录】


章 小波综述:内容、原因、方式  1

1.1 时频局部化 1

1.2 小波变换:与加窗傅里叶变换的相似与不同 2

1.3 不同类型的小波变换 6

1.3.1 连续小波变换 6

1.3.2 离散但冗余的小波变换框架 7

1.3.3 正交小波基:多分辨率分析 9

第2章 连续小波变换 16

2.1 带限函数与香农定理 16

2.2 作为核希尔伯特空间特例的带限函数 19

2.3 带限和时限 20

2.4 连续小波变换 22

2.5 构成连续小波变换基础的核希尔伯特空间 29

2.6 更高维连续小波变换 31

2.7 与连续加窗傅里叶变换的相似 32

2.8 用于构建有用算子的连续变换 34

2.9 用于数学变焦的连续小波变换:局部正则的表征 43

第3章 离散小波变换:框架 50

3.1 小波变换的离散化 50

3.2 框架概述 53

3.3 小波框架 60

3.3.1 一个必要条件:母小波的容许 60

3.3.2 一个充分条件及框架界的估计 63

3.3.3 对偶框架 66

3.3.4 基本方案的一些变化形式 67

3.3.5 示例 69

3.4 加窗傅里叶变换的框架 77

3.4.1 一个必要条件:足够高的时频密度 77

3.4.2 一个充分条件和对框架界的估计 78

3.4.3 对偶框架 79

3.4.4 示例v80

3.5 时频局部化 83

3.6 框架中的冗余:可以换回什么v93

3.7 一些结论要点 95

第4章 时频密度与正交基 102

4.1 时频密度在小波框架与加窗傅里叶框架中的角 102

4.2 正交基 109

4.2.1 正交小波基 109

4.2.2 加窗傅里叶变换回顾 114

第5章 小波正交基与多分辨率分析 123

5.1 基本思想 123

5.2 示例 131

5.3 放松某些条件 133

5.3.1 尺度函数的里斯基 133

5.3.2 以尺度函数为起点 134

5.4 更多示例:battle-lemarié小波族 139

5.5 正交小波基的正则 146

5.6 与子带滤波方法的联系 149

第6章 紧支撑小波的正交基 159

6.1 m_0 的构造 159

6.2 与正交小波基的对应关系 166

6.3 正交的充要条件 173

6.4 生成正交基的紧支撑小波举例 185

6.5 级联算法:与细分或细化格式的联系 193

第7章 再谈紧支撑小波的正则 203

7.1 基于傅里叶的方法 204

7.1.1 暴力方法 204

7.1.2 由不变循环推导衰减估计 208

7.1.3 李特尔伍德﹣佩利类型的估计 214

7.2 直接方法 219

7.3 具有更强正则的紧支撑小波 228

7.4 正则,还是消失矩 230

第8章 紧支撑小波基的对称 236

8.1 紧支撑正交小波缺乏对称 236

8.1.1 更接近线相位 239

8.2 夸夫曼小波 242

8.3 对称双正交小波基 246

8.3.1 重构 246

8.3.2 尺度函数与小波 248

8.3.3 正则与消失矩 252

8.3.4 对称 253

8.3.5 接近正交基的双正交基 263

第9章 以小波表征泛函空间 269

9.1 小波:在1< p <1 时l^p(r) 的无条件基 269

9.2 以小波表征泛函空间 278

9.3 l1([0; 1]) 的小波 283

9.4 小波展开与傅里叶级数的对比 286

0章 正交小波基的泛化与 291

10.1 伸缩因子为2的多维小波基 291

10.2 具有大于2的整数伸缩因子的一维正交小波基 297

10.3 具有矩阵伸缩因子的多维小波基 298

10.4 具有非整数伸缩因子的一维正交小波基 300

10.5 更好的频率分辨率:划分 303

10.6 小波包基 308

10.7 区间上的小波基 309

参文献 316

名词索引 328

著者索引 331

点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP