机器学习实践指南
¥
28.09
3.6折
¥
79
九品
仅1件
作者[英]阿图尔·特里帕蒂
出版社机械工业出版社
出版时间2017-03
版次1
装帧其他
货号A21
上书时间2024-11-22
商品详情
- 品相描述:九品
图书标准信息
-
作者
[英]阿图尔·特里帕蒂
-
出版社
机械工业出版社
-
出版时间
2017-03
-
版次
1
-
ISBN
9787111592129
-
定价
79.00元
-
装帧
其他
-
开本
16开
-
纸张
胶版纸
- 【内容简介】
-
机器学习应用遍及人工智能的各个领域,是众多数学科学家需要学习的内容。本书第壹部分提供了一个相当复杂的机器学习系统,以帮助读者提高其效率。第二部分重点介绍了三个不同的基于现实世界的数据的案例研究,并提供相应解决方案。全书通过知识介绍,使读者了解收集数据、准备使用数据、训练模型、评估模型的性能,以及改进模型的性能的方法;通过对实际问题解决的讲解,帮助读者获得处理机器学习问题的经验。
- 【作者简介】
-
阿图尔·特里帕蒂(AtulTripathi),在机器学习和量化投资领域有超过11年的从业经历,并拥有14年的软件开发和研究经验。他一直致力于先进的机器学习技术,如神经网络和马尔可夫模型的研究。在研究机器学习技术的同时,他利用其解决了图像处理、电信、语音识别和自然语言处理等领域相关的诸多问题。他还利用神经网络模型开发了文本挖掘工具。在量化投资领域,他利用蒙特卡罗仿真开发了价值风险、极值定理、期权定价和能源衍生品等模型。
- 【目录】
-
目 录?Contents
译者序
前言
第1章 机器学习引言 1
1.1 什么是机器学习 1
1.2 分类方法概述 2
1.3 聚类方法概述 2
1.4 监督学习概述 3
1.5 无监督学习概述 4
1.6 增强学习概述 4
1.7 结构化预测概述 5
1.8 神经网络概述 5
1.9 深度学习概述 6
第2章 分类 7
2.1 引言 7
2.2 判别函数分析:地下卤水地质化学测量 8
2.3 多元逻辑回归:理解学生的课程计划选择 15
2.4 Tobit回归:评估学生的学术能力 20
2.5 泊松回归:理解加拉帕戈斯群岛现存物种 27
第3章 聚类 38
3.1 引言 38
3.2 层次聚类:世界银行样本数据集 39
3.3 层次聚类:1999~2010年
亚马逊雨林的烧毁情况 44
3.4 层次聚类:基因聚类 55
3.5 二进制聚类:数学测验 68
3.6 k均值聚类:欧洲各国蛋白质消耗量 75
3.7 k均值聚类:食品 80
第4章 模型选择和正则化 86
4.1 引言 86
4.2 压缩方法:每天消耗的卡路里 87
4.3 降维方法:Delta航空公司航空队 100
4.4 主成分分析:理解世界菜肴 109
第5章 非线性 114
5.1 广义加性模型:衡量新西兰的家庭收入 114
5.2 平滑样条:理解汽车和速度 119
5.3 局部回归:理解干旱警告和影响 129
第6章 监督学习 136
6.1 引言 136
6.2 决策树学习:对胸痛患者的预先医疗护理指示 137
6.3 决策树学习:基于收入的房地产价值分布 145
6.4 决策树学习:预测股票走势方向 154
6.5 朴素贝叶斯:预测股票走势方向 170
6.6 随机森林:货币交易策略 184
6.7 支持向量机:货币交易策略 193
6.8 随机梯度下降:成人收入 201
第7章 无监督学习 208
7.1 引言 208
7.2 自组织映射:可视化热图 209
7.3 矢量量化:图像聚类 212
第8章 增强学习 217
8.1 引言 217
8.2 马尔可夫链:股票区制转移模型 218
8.3 马尔可夫链:多渠道归因模型 229
8.4 马尔可夫链:汽车租赁代理服务 239
8.5 连续马尔可夫链:加油站的车辆服务 243
8.6 蒙特卡罗模拟:校准Hull-White短期利率 247
第9章 结构化预测 257
9.1 引言 257
9.2 隐马尔可夫模型:欧元和美元 257
9.3 隐马尔可夫模型:区制检测 263
第10章 神经网络 270
10.1 引言 270
10.2 为S&P 500建模 270
10.3 衡量失业率 278
第11章 深度学习 292
11.1 引言 292
11.2 循环神经网络:预测周期信号 292
第12章 案例研究:探索世界银行数据 299
12.1 引言 299
12.2 探索世界银行数据 299
第13章 案例研究:再保险合同定价 316
13.1 引言 316
13.2 再保险合同定价 316
第14章 案例研究:用电量预测 329
14.1 引言 329
14.2 用电量测量 329
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价