• 蒙特卡罗统计方法
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

蒙特卡罗统计方法

52.56 6.7折 79 九品

仅1件

北京东城
认证卖家担保交易快速发货售后保障

作者[法]罗伯特 著

出版社世界图书出版公司

出版时间2009-10

版次2

装帧平装

货号A3

上书时间2024-11-15

图书-天下的书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [法]罗伯特 著
  • 出版社 世界图书出版公司
  • 出版时间 2009-10
  • 版次 2
  • ISBN 9787510005114
  • 定价 79.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 645页
  • 正文语种 英语
【内容简介】
  Itisatributetoourprofessionthatatextbookthatwascurrentin1999isstartingtofeelold.TheworkforthefirsteditionofMonteCarloStatisticalMethods(MCSM1)wasfinishedinlate1998,andtheadvancesmadesincethen,aswellasourlevelofunderstandingofMonteCarlomethods,havegrownagreatdeal.Moreover,twootherthingshavehappened.TopicsthatjustmadeitintoMCSM1withthebriefesttreatment(forexample,perfectsampling)havenowattainedalevelofimportancethatnecessitatesamuchmorethoroughtreatment.Secondly,someothermethodshavenotwithstoodthetestoftimeor,perhaps,havenotyetbeenfullydeveloped,andnowreceiveamoreappropriatetreatment.
  WhenweworkedonMCSM1inthemid-to-late90s,MCMCalgorithmswerealreadyheavilyused,andtheflowofpublicationsonthistopicwasatsuchahighlevelthatthepicturewasnotonlyrapidlychanging,butalsonecessarilyincomplete.Thus,theprocessthatwefollowedinMCSM1wasthatofsomeonewhowasthrownintotheoceanandwastryingtograbontothebiggestandmostseeminglyusefulobjectswhiletryingtoseparatetheflotsamfromthejetsam.Nonetheless,wealsofeltthatthefundamentalsofmanyofthesealgorithmswereclearenoughtobecoveredatthetextbookalevel,sowe"swamon.
【作者简介】
作者:(法国)罗伯特(ChristianP.Robert)(法国)GeorgeCasella
【目录】
PrefacetotheSecondEdition
PrefacetotheFirstEdition
1Introduction
1.1StatisticalModels
1.2LikelihoodMethods
1.3BayesianMethods
1.4DeterministicNumericalMethods
1.4.1Optimization
1.4.2Integration
1.4.3Comparison
1.5Problems
1.6Notes
1.6.1PriorDistributions
1.6.2BootstrapMethods

2RandomVariableGeneration
2.1Introduction
2.1.1UniformSimulation
2.1.2TheInverseTransform
2.1.3Alternatives
2.1.4OptimalAlgorithms
2.2GeneralTransformationMethods
2.3Accept-RejectMethods
2.3.1TheFundamentalTheoremofSimulation
2.3.2TheAccept-RejectAlgorithm
2.4EnvelopeAccept-RejectMethods
2.4.1TheSqueezePrinciple
2.4.2Log-ConcaveDensities
2.5Problems
2.6Notes
2.6.1TheKissGenerator
2.6.2Quasi-MonteCarloMethods
2.6.3MixtureRepresentatiOnS

3MonteCarloIntegration
3.1IntroduCtion
3.2ClassicalMonteCarloIntegration
3.3ImportanceSampling
3.3.1Principles
3.3.2FiniteVarianceEstimators
3.3.3ComparingImportanceSamplingwithAccept-Reject
3.4LaplaceApproximations
3.5Problems
3.6Notes
3.6.1LargeDeviationsTechniques
3.6.2TheSaddlepointApproximation

4ControlingMonteCarloVariance
4.1MonitoringVariationwiththeCLT
4.1.1UnivariateMonitoring
4.1.2MultivariateMonitoring
4.2Rao-Blackwellization
4.3RiemannApproximations
4.4AccelerationMethods
4.4.1AntitheticVariables
4.4.2Contr01Variates
4.5Problems
4.6Notes
4.6.1MonitoringImportanceSamplingConvergence
4.6.2Accept-RejectwithLooseBounds
4.6.3Partitioning

5MonteCarloOptimization
5.1Introduction
5.2StochasticExploration
5.2.1ABasicSolution
5.2.2GradientMethods
5.2.3SimulatedAnnealing
5.2.4PriorFeedback
5.3StochasticApproximation
5.3.1MissingDataModelsandDemarginalization
5.3.2ThcEMAlgorithm
5.3.3MonteCarloEM
5.3.4EMStandardErrors
5.4Problems
5.5Notes
5.5.1VariationsonEM
5.5.2NeuralNetworks
5.5.3TheRobbins-Monroprocedure
5.5.4MonteCarloApproximation

6MarkovChains
6.1EssentialsforMCMC
6.2BasicNotions
6.3Irreducibility,Atoms,andSmallSets
6.3.1Irreducibility
6.3.2AtomsandSmallSets
6.3.3CyclesandAperiodicity
6.4TransienceandRecurrence
6.4.1ClassificationofIrreducibleChains
6.4.2CriteriaforRecurrence
6.4.3HarrisRecurrence
6.5InvariantMeasures
6.5.1StationaryChains
6.5.2Kac’sTheorem
6.5.3ReversibilityandtheDetailedBalanceCondition
6.6ErgodicityandConvergence
6.611Ergodicity
6.6.2GeometricConvergence
6.6.3UniformErgodicity
6.7LimitTheorems
6.7.1ErgodicTheorems
6.7.2CentralLimitTheorems
6.8Problems
6.9Notes
6.9.1Dri允Conditions
6.9.2Eaton’SAdmissibilityCondition
6.9.3AlternativeConvergenceConditions
6.9.4MixingConditionsandCentralLimitTheorems
6.9.5CovarianceinMarkovChains

7TheMetropolis-HastingsAlgorithm
7.1TheMCMCPrinciple
7.2MonteCarloMethodsBasedonMarkovChains
7.3TheMetropolis-Hastingsalgorithm
7.3.1Definition
7.3.2ConvergenceProperties
7.4TheIndependentMetropolis-HastingsAlgorithm
7.4.1FixedProposals
7.4.2AMetropolis-HastingsVersionofARS
7.5Randomwalks
7.6OptimizationandContr01
7.6.1OptimizingtheAcceptanceRate
7.6.2ConditioningandAccelerations
7.6.3AdaptiveSchemes
7.7Problems
7.8Nores
7.8.1BackgroundoftheMetropolisAlgorithm
7.8.2GeometricConvergenceofMetropolis-HastingsAlgorithms
7.8.3AReinterpretationofSimulatedAnnealing
7.8.4RCferenceAcceptanceRates
7.8.5LangevinAlgorithms

8TheSliceSampler
8.1AnotherLookattheFundamentalTheorem
8.2TheGeneralSliceSampler
8.3ConvergencePropertiesoftheSliceSampler
8.4Problems
8.5Notes
8.5.1DealingwithDi伍cultSlices

9TheTwo-StageGibbsSampler
9.1AGeneralClassofTwo-StageAlgorithms
9.1.1FromSliceSamplingtoGibbsSampling
9.1.2Definition
9.1.3BacktotheSliceSampler
9.1.4TheHammersley-CliffordTheorem
9.2FundamentalProperties
9.2.1ProbabilisticStructures
9.2.2ReversibleandInterleavingChains
9.2.3TheDualityPrinciple
9.3MonotoneCovarianceandRao-Btackwellization
9.4TheEM-GibbsConnection
9.5Transition
9.6Problems
9.7Notes
9.7.1InferenceforMixtures
9.7.2ARCHModels

10TheMulti-StageGibbsSampler
10.1BasicDerivations
10.1.1Definition
10.1.2Completion
……
11VariableDimensionModelsandReversibleJumpAlgorithms
12DiagnosingConvergence
13PerfectSampling
14IteratedandSequentialImportanceSampling
AProbabilityDistributions
BNotation
References
IndexofNames
IndexofSubjects
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP