• 机器人数学基础(机器人学及其应用系列丛书)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

机器人数学基础(机器人学及其应用系列丛书)

61 6.2折 99 全新

库存22件

河北保定
认证卖家担保交易快速发货售后保障

作者张铃 著;吴福朝、张钹 编

出版社清华大学出版社

出版时间2021-08

版次1

装帧平装

货号9787302559696

上书时间2024-11-13

尚贤文化郑州分店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 张铃 著;吴福朝、张钹 编
  • 出版社 清华大学出版社
  • 出版时间 2021-08
  • 版次 1
  • ISBN 9787302559696
  • 定价 99.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 435页
  • 字数 681千字
【内容简介】
  《机器人数学基础(机器人学及其应用系列丛书)》由矩阵理论与应用、数值计算与分析、概率与统计和射影几何与非欧几何四部分内容组成,它们是机器人学和人工智能专业涉及的一些基本数学理论和方法。矩阵理论与应用主要包括正交与对角化、矩阵分解;数值计算与分析主要包括多项式插值、非线性优化和非线性方程与微分方程的数值算法;概率与统计主要包括马尔可夫链、隐马尔可夫模型、贝叶斯推断、贝叶斯决策和期望算法;射影几何与非欧几何主要包括平面射影几何、空间射影几何、双曲几何和椭圆几何。
  《机器人数学基础(机器人学及其应用系列丛书)》可作为大学相关专业高年级本科生和研究生的教材或课外参考书,也可作为相关领域工程技术人员的自学读本。
【作者简介】

吴福朝,中国科学院自动化研究所任研究员。长期从事数学与计算机视觉方面的教学和科研工作,主持国家863、自然科学基金项目十多项;在数学年刊、数学杂志、计算机学报、自动化学报、PAMI、IJCV、TIP、TNN和PR等重要学术期刊发表研究论文近200篇,在科学出版社和Springer-Verlag出版学术专著三部。

 

张铃,长期从事数学与人工智能方面的教学和科研工作,先后获国家自然科学奖和省部级二等以上奖励十次;主持或参加国家863、973、国家攀登计划、自然科学重点项目、自然科学面上项目多项;出版学术专著三部,其中两部获国家出版署优秀图书一等奖,一部获高教出版社优秀科技专著特等奖;在计算机学报、PAMI、TNN等重要学术期刊发表研究论文近200篇。

 


【目录】

第一部分矩阵理论与应用

 


 

第1章正交与对角化

 


 

1.1欧氏空间

 


 

1.1.1基本概念

 


 

1.1.2正交矩阵

 


 

1.2酉空间

 


 

1.2.1基本概念

 


 

1.2.2酉矩阵

 


 

1.3正规矩阵

 


 

1.3.1舒尔引理

 


 

1.3.2正规矩阵

 


 

1.3.3正交谱分解

 


 

1.4轭米特矩阵

 


 

1.4.1特征值的极性

 


 

1.4.2半正定轭米特矩阵

 


 

1.4.3与酉矩阵的关系

 


 

1.5反对称矩阵

 


 

1.5.1三阶反对称矩阵

 


 

1.5.2正交相似标准形

 


 

1.5.3与旋转矩阵的关系

 


 

习题

 


 

第2章矩阵分解

 


 

2.1正交三角分解

 


 

2.1.1吉文斯方法

 


 

2.1.2豪斯荷德方法

 


 

2.2三角分解

 


 

2.2.1乔里斯基分解

 


 

2.2.2杜利特分解

 


 

2.3奇异值分解

 


 

2.3.1正交对角分解

 


 

2.3.2奇异值分解

 


 

2.3.3奇异值的极性

 


 

2.4线性最小二乘

 


 

2.4.1满秩最小二乘

 


 

2.4.2亏秩最小二乘

 


 

2.4.3齐次最小二乘

 


 

习题

 


 

第3章矩阵分析

 


 

3.1向量与矩阵范数

 


 

3.1.1向量范数

 


 

3.1.2矩阵范数

 


 

3.1.3矩阵条件数

 


 

3.2矩阵级数与函数

 


 

3.2.1矩阵序列

 


 

3.2.2矩阵级数

 


 

3.2.3矩阵函数

 


 

3.3矩阵导数

 


 

3.3.1函数矩阵的导数

 


 

3.3.2向量映射对向量的导数

 


 

3.3.3函数对矩阵的导数

 


 

3.3.4矩阵映射对矩阵的导数

 


 

3.3.5矩阵的全微分

 


 

习题

 


 

第二部分数值计算与分析

 


 

第4章插值与拟合

 


 

4.1多项式插值

 


 

4.1.1基本概念

 


 

4.1.2拉格朗日插值法

 


 

4.1.3牛顿插值法

 


 

4.1.4插值误差

 


 

4.1.5切比雪夫插值法

 


 

4.2分段低次插值

 


 

4.2.1分段线性和二次插值

 


 

4.2.2分段三次轭米特插值

 


 

4.2.3分段三次样条插值

 


 

4.3最小二乘拟合

 


 

4.3.1基本概念

 


 

4.3.2线性最小二乘拟合

 


 

4.3.3非线性最小二乘拟合

 


 

习题

 


 

第5章非线性方程(组)

 


 

5.1非线性方程

 


 

5.1.1二分法

 


 

5.1.2牛顿法

 


 

5.1.3拟牛顿法

 


 

5.1.4不动点法

 


 

5.2非线性方程组

 


 

5.2.1多元牛顿法

 


 

5.2.2多元拟牛顿法

 


 

5.2.3多元不动点法

 


 

习题

 


 

第6章非线性优化

 


 

6.1基本概念

 


 

6.1.1非线性优化问题

 


 

6.1.2局部极值定理

 


 

6.1.3基本迭代格式

 


 

6.2一维搜索

 


 

6.2.1精确搜索

 


 

6.2.2非精确搜索

 


 

6.3无约束优化

 


 

6.3.1最速下降法

 


 

6.3.2牛顿法

 


 

6.3.3拟牛顿法

 


 

6.3.4共轭方向法

 


 

6.3.5莱文贝格猜砜涮胤椒

 


 

6.4约束优化

 


 

6.4.1最优性条件

 


 

6.4.2惩罚法

 


 

6.4.3乘子法

 


 

习题

 


 

第7章微分方程

 


 

7.1初值问题

 


 

7.1.1基本概念

 


 

7.1.2存在性、唯一性和连续性

 


 

7.1.3数值微积分

 


 

7.2单步方法

 


 

7.2.1欧拉法

 


 

7.2.2中点法与梯形法

 


 

7.2.3龙格部馑法

 


 

7.2.4收敛性与稳定性

 


 

7.3多步法

 


 

7.3.1阿当姆斯法

 


 

7.3.2一般线性多步法

 


 

7.3.3预测残U法

 


 

7.4边值问题

 


 

7.5有限差分法

 


 

7.5.1线性问题

 


 

7.5.2非线性问题

 


 

7.6有限元法

 


 

7.6.1基本思想

 


 

7.6.2线性B样条函数

 


 

7.6.3数值解法

 


 

习题

 


 

第三部分概率与统计

 


 

第8章贝叶斯推断

 


 

8.1先验分布与后验分布

 


 

8.1.1基本概念

 


 

8.1.2确定先验分布的方法

 


 

8.1.3正态参数的后验分布

 


 

8.1.4一些常用分布参数的后验分布

 


 

8.2贝叶斯估计

 


 

8.2.1点估计

 


 

8.2.2区间估计

 


 

8.3预测推断

 


 

8.4假设检测

 


 

8.4.1后验机会比

 


 

8.4.2贝叶斯因子

 


 

8.5模型选择

 


 

8.5.1贝叶斯方法

 


 

8.5.2信息准则

 


 

习题

 


 

第9章贝叶斯决策

 


 

9.1贝叶斯风险与后验风险

 


 

9.1.1决策函数和风险函数

 


 

9.1.2贝叶斯风险

 


 

9.1.3后验风险

 


 

9.2一般损失下的贝叶斯估计

 


 

9.2.1平方损失

 


 

9.2.2二次损失

 


 

9.2.3绝对损失

 


 

9.2.4线性损失

 


 

9.2.501损失

 


 

9.2.6两点注释

 


 

9.3极小极大准则

 


 

9.4EM和GEM算法

 


 

9.4.1EM算法

 


 

9.4.2收敛性与估计精度

 


 

9.4.3GEM算法

 


 

9.4.4混合模型

 


 

习题

 


 

第10章马尔可夫链

 


 

10.1转移概率

 


 

10.1.1基本概念

 


 

10.1.2转移概率

 


 

10.2状态的类型

 


 

10.2.1周期性、常返性和遍历性

 


 

10.2.2类型的判别

 


 

10.2.3状态空间的分解

 


 

10.3渐近性质与平稳分布

 


 

10.3.1渐近性质

 


 

10.3.2平稳分布

 


 

10.4隐马尔可夫模型

 


 

10.4.1基本概念

 


 

10.4.2概率计算

 


 

10.4.3模型估计

 


 

10.4.4状态预测

 


 

习题

 


 

第四部分射影几何与非欧几何

 


 

第11章平面射影几何

 


 

11.1射影平面

 


 

11.1.1基本概念

 


 

11.1.2点线对偶

 


 

11.1.3交比

 


 

11.2二次曲线

 


 

11.2.1矩阵表示

 


 

11.2.2配极对应

 


 

11.2.3对偶二次曲线

 


 

11.3二维射影变换

 


 

11.3.1基本概念

 


 

11.3.2变换群与不变量

 


 

11.4恢复场景的几何结构

 


 

11.4.1中心投影

 


 

11.4.2仿射结构

 


 

11.4.3相似结构

 


 

11.4.4欧氏结构

 


 

习题

 


 

第12章空间射影几何

 


 

12.1射影空间

 


 

12.1.1点与平面

 


 

12.1.2空间直线

 


 

12.1.3平面束的交比

 


 

12.2二次曲面

 


 

12.2.1基本概念

 


 

12.2.2绝对二次曲线

 


 

12.2.3二次曲面的对偶

 


 

12.2.4绝对对偶二次曲面

 


 

12.3三维射影变换

 


 

12.3.1基本概念

 


 

12.3.2二次曲面的变换

 


 

12.3.3仿射变换

 


 

12.3.4相似变换

 


 

12.3.5等距变换

 


 

12.3.6射影坐标系

 


 

12.4摄像机几何

 


 

12.4.1成像模型

 


 

12.4.2摄像机矩阵的元素

 


 

12.4.3投影与反投影

 


 

习题

 


 

第13章非欧几何简介

 


 

13.1椭圆几何

 


 

13.1.1椭圆测度

 


 

13.1.2椭圆几何模型

 


 

13.2双曲几何

 


 

13.2.1双曲测度

 


 

13.2.2双曲几何模型

 


 

13.3高维非欧几何

 


 

13.3.1高维射影空间

 


 

13.3.2高维非欧几何

 

参考文献

 


点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP