• TensorFlow 1.x机器学习(影印版)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

TensorFlow 1.x机器学习(影印版)

13.8 1.7折 82 全新

仅1件

河北保定
认证卖家担保交易快速发货售后保障

作者[越南]全华(Quan Hua),(巴) 夏姆斯·乌尔·阿齐姆(Shams,UI,Azeem),(美) 赛义夫·阿哈迈德(Saif Ahmed) 著

出版社东南大学出版社

出版时间2018-09

版次1

装帧其他

货号9787564177546

上书时间2024-11-20

尚贤文化济南分店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 [越南]全华(Quan Hua),(巴) 夏姆斯·乌尔·阿齐姆(Shams,UI,Azeem),(美) 赛义夫·阿哈迈德(Saif Ahmed) 著
  • 出版社 东南大学出版社
  • 出版时间 2018-09
  • 版次 1
  • ISBN 9787564177546
  • 定价 82.00元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 288页
  • 字数 372千字
【内容简介】
  Google的TensorFlow是机器学习世界的游戏规则改变者。

  《TensorFlow 1.x机器学习(影印版 英文版)》将教你如何发挥Python和TensorFlow 1.x的威力更容易地入门机器学习。首先,你将了解基础的安装过程并浏览TensorFlow 1.x的各种能力。然后是训练和运行分类器,以及介绍库中的特性,包括TensorBoard的数据流图、训练和性能可视化——全部通过一个例子展现——富含背景信息且来自多个行业的实际问题。你将进一步探索文本和图像分析,并在TensorFlow 1.x中学习CNN建模和设置。接下来,实现一个完整的真实生产系统,从训练到运行一个深度学习模型。逐步深入学习Amazon Web Services(AWS)并创建一个深度神经网络以解决视频活动识别问题。*后,把caffe模型转换到TensorFlow,并学习高级TensorFlow库:TensorFlow—Slim。

  学完《TensorFlow 1.x机器学习(影印版 英文版)》,你会被武装成可以应对机器学习环境中任何TensorFlow 1.x相关挑战的绝地武士。
【作者简介】


quan hua i a puter viion and machine learning engineer at bodidata a datatform for body meaurement where he focue on developing puter viion andmachine learning application for a handheld technology capable of acquiring a bodyavatar while a peron i fully clothed.he earned a bachelor of cience degree from theuniverity of cience vietnam peizing in puter viion.he ha been working inthe field of puter viion and machine learning for about 3 year at tartu.
ham ul azeem i an undergraduate in electrical engineering from nut ilamabadpakitan.he ha a great interet in the puter cience field and he tarted hi journeywith android development.now he puruing hi career in machine learningparticularly in deep learning by doing medicalrelated freelancing project with differentpanie.he wa alo a member of the rie lab nut and he ha a publication credit at the ieeeinternational conference robio a a coauthor of deigning of motion for humanoidgoalkeeper robot.
aif ahmed i an acplihed quantitative analyt and data cientit with 15 year ofindutry experience.hi career tarted in management conulting at accenture and leadhim to quantitative and enior management role at goldman ach and aig invetment.mot recently he cofounded and run a tartup focued on applying deep learning toautomating medical imaging.he obtained hi bachelor degree in puter cience fromcornell univerity and i currently puruing a graduate degree in data cience at u.c.berkeley.
【目录】
Preface

Chapter 1: Getting Started with TensorFiow

Current use

Installing TensorFIow

Ubuntu installation

macOS installation

Windows installation

Virtual machine setup

Testing the installation

Summary

Chapter 2: Your First Classifier

The key parts

Obtaining training data

Downloading training data

Understanding classes

Automating the training data setup

Additional setup

Converting images to matrices

Logical stopping points

The machine learning briefcase

Training day

Saving the model for ongoing use

Why hide the test set?

Using the classifier

Deep diving into the network

Skills learned

Summary

Chapter 3: The TensorFIow Toolbox

A quick preview

Installing TensorBoard

Incorporating hooks into our code

Handwritten digits

AlexNet

Automating runs

Summary

Chapter 4: Cats and Dogs

Revisiting notMNIST

Program configurations

Understanding convolutional networks

Revisiting configurations

Constructing the convolutional network

Fulfilment

Training day

Actual cats and dogs

Saving the model for ongoing use

Using the classifier

Skills learned

Summary

Chapter 5: Sequence to Sequence Models-Parlez-vous Fran~:ais?

A quick preview

Drinking from the firehose

Training day

Summary

Chapter 6: Finding Meaning

Additional setup

Skills learned

Summary

Chapter 7: Making Money with Machine Learning

Inputs and approaches

Getting the data

Approaching the problem

Downloading and modifying data

Viewing the data

Extracting features

Preparing for training and testing

Building the network

Training

Testing

Taking it further

Practical considerations for the individual

Skills learned

Summary

Chapter 8: The Doctor Will See You Now

The challenge

The data

The pipeline

Understanding the pipeline

Preparing the dataset

Explaining the data preparation

Training routine

Validation routine

Visualize outputs with TensorBoard

Inception network

Going further

Other medical data challenges

The ISBI grand challenge

Reading medical data

Skills Learned

Summary

Chapter 9: Cruise Control - Automation

An overview of the system

Setting up the project

Loading a pre-trained model to speed up the training

Testing the pre-trained model

Training the model for our dataset

Introduction to the Oxford-lilT Pet dataset

Dataset Statistics

Downloading the dataset

Preparing the data

Setting up input pipelines for training and testing

Defining the model

Defining training operations

Performing the training process

Exporting the model for production

Serving the model in production

Setting up TensorFIow Serving

Running and testing the model

Designing the web sewer

Testing the system

Automatic fine-tune in production

Loading the user-labeled data

Performing a fine-tune on the model

Setting up cronjob to run every day

Summary

Chapter 10: Go Live and Go Big

Quick look at Amazon Web Services

P2 instances

G2 instances

F1 instances

Pricing

Overview of the application

Datasets

Preparing the dataset and input pipeline

Pre-processing the video for training

Input pipeline with RandomShuffleQueue

Neural network architecture

Training routine with single GPU

Training routine with multiple GPU

Overview of Mechanical Turk

Summary

Chapter 11: Going Further - 21 Problems

Dataset and challenges

Problem 1 - ImageNet dataset

Problem 2 - COCO dataset

Problem 3 - Open Images dataset

Problem 4 - YouTube-8M dataset

Problem 5 - AudioSet dataset

Problem 6 - LSUN challenge

Problem 7 - MegaFace dataset

Problem 8 - Data Science Bowl 2017 challenge

Problem 9 - StarCraft Game dataset

TensorFIow-based Projects

Problem 10 - Human Pose Estimation

Problem 11 - Object Detection - YOLO

Problem 12 - Object Detection - Faster RCNN

Problem 13 - Person Detection - tensorbox

Problem 14 - Magenta

Problem 15 - Wavenet

Problem 16 - Deep Speech

Interesting Projects

Problem 17 - Interactive Deep Colorization -iDeepColor

Problem 18 - Tiny face detector

Problem 19 - People search

Problem 20 - Face Recognition - MobilelD

Problem 21 - Question answering - DrQA

Gaffe to TensorFlow

TensorFIow-Slim

Summary

Appendix: Advanced Installation

Installation

Installing Nvidia driver

Installing the CUDA toolkit

Installing cuDNN

Installing TensorFIow

Verifying TensorFIow with GPU support

Using TensorFIow with Anaconda

Summary

Index
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP