• Python 深度学习算法实战
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

Python 深度学习算法实战

57.1 5.3折 108 全新

仅1件

河北保定
认证卖家担保交易快速发货售后保障

作者[英]苏达桑·拉维尚迪兰

出版社水利水电出版社

出版时间2022-09

版次1

装帧其他

货号9787522603193

上书时间2024-11-05

尚贤文化济南分店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 [英]苏达桑·拉维尚迪兰
  • 出版社 水利水电出版社
  • 出版时间 2022-09
  • 版次 1
  • ISBN 9787522603193
  • 定价 108.00元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 340页
  • 字数 575.000千字
【内容简介】
深度学习是人工智能最热门的领域之一,《Python 深度学习算法实战》详细介绍了常用的深度学习算法、使用 TensorFlow 实现各种算法的方法,以及算法背后的数学原理。全书分 3 部分共 11 章,其中第 1 部分介绍深度学习入门的相关知识、如何构建自己的神经网络,以及 Python 机器学习和深度学习库 TensorFlow 的使用方法。第 2 部分介绍深度学习的基础算法,首先介绍了梯度下降法和它的变体,如 NAG、AMSGrad、Adadelta、
  Adam 和 Nadam;然后详细介绍了 RNN 和 LSTM 的知识,以及如何用 RNN 生成歌词;接着介绍了广泛应用于
  图像识别任务的卷积神经网络和胶囊网络;最后介绍了如何使用 CBOW、skip-gram 和 PV-DM 理解单词和文档
  的语义。第 3 部分介绍一些高级的深度学习算法,探索了各种 GAN,包括 InfoGAN 和 LSGAN,以及自动编码
  器,如 CAE、DAE 和 VAE。学完本书,读者将掌握实现深度学习所需要的技能。
  《Python 深度学习算法实战》特别适合机器学习工程师、数据科学家、AI 开发人员等全面学习深度学习
  的算法知识,也适合有一定机器学习和 Python 编程经验,对神经网络和深度学习感兴趣的所有人员。
【作者简介】
苏达桑 · 拉维尚迪兰,安那大学信息技术学士,数据科学家、研究员、人工智能爱好者。他的研究领域专注于深度学习和强化学习的实际实现,其中包括自然语言处理和计算机视觉。他是一名开源贡献者,喜欢在Stack Overflow(IT问答网站)上回答问题。他还撰写了畅销书《Hands-On Reinforcement Learning with Python》(Packt Publishing出版)。
【目录】

深度学习是人工智能最流行的领域之一, 《Python深度学习算法实战》就详细介绍了常用的深度学习算法以及如何使用TensorFlow进行编程实现。全书分3部分共11章, 其中第1部分首先解释了如何构建自己的神经网络及Python机器学习和深度学习库TensorFlow的相关知识。第2部分先介绍了梯度下降和它的变体, 如NAG、AMSGrad、AdaDelta、Adam和Nadam, 然后详细介绍了RNN和LSTM的知识, 以及如何用RNN生成歌词。接下来, 将介绍广泛应用于图像识别任务的卷积神经网络和胶囊网络, 最后介绍了如何使用CBOW、skip-gram和PV-DM理解单词和文档的语义。第3部分介绍了各种GAN, 包括InfoGAN和LSGAN, 以及自动编码器, 如CAE、DAE和VAE。

内容摘要
深度学习是人工智能最热门的领域之一,《Python深度学习算法实战》详细介绍了常用的深度学习算法、使用TensorFlow实现各种算法的方法,以及算法背后的数学原理。全书分3部分共11章,其中第1部分介绍深度学习入门的相关知识、如何构建自己的神经网络,以及Python机器学习和深度学习库TensorFlow的使用方法。第2部分介绍深度学习的基础算法,首先介绍了梯度下降法和它的变体,如NAG、AMSGrad、Adadelta、Adam和Nadam;然后详细介绍了RNN和LSTM的知识,以及如何用RNN生成歌词;接着介绍了广泛应用于图像识别任务的卷积神经网络和胶囊网络;最后介绍了如何使用CBOW、skip-gram和PV-DM理解单词和文档的语义。第3部分介绍一些高级的深度学习算法,探索了各种GAN,包括InfoGAN和LSGAN,以及自动编码器,如CAE、DAE和VAE。学完本书,读者将掌握实现深度学习所需要的技能。《Python深度学习算法实战》特别适合机器学习工程师、数据科学家、AI开发人员等全面学习深度学习的算法知识,也适合有一定机器学习和Python编程经验,对神经网络和深度学习感兴趣的所有人员。

主编推荐

本书读者对象为:想学习深度学习算法的机器学习工程师、数据科学家、人工智能开发人员,以及有一定Python编程和机器学习经验,想进一步学习神经网络和深度学习技术的所有人。

本书以实践的形式详细介绍了从基础到高级的一些流行的深度学习算法,并通过TensorFlow对这些算法进行了编程实现。通过本书,读者将深入了解每一种算法、算法背后的数学原理,以及各种算法的实现方法。学完本书后,读者将具备在自己的项目中实现深度学习所需的技能。

1、构建自己的神经网络的方法及TensorFlow的使用方法。
2、梯度下降算法及变体的应用方法及编程实现,如 NAG、AMSGrad、Adadelta、Adam、Nadam 等。
3、循环神经网络RNN、卷积神经网络CNN和长短期记忆网络LSTM的工作原理。
4、卷积网络和胶囊网络的各种架构、背后的数学知识及在TensorFlow的编程实现。
5、如何让机器使用 CBOW、skip-gram 和 PV-DM 理解单词和文档的语义。
6、各种生成对抗网络GAN的使用方法,如InfoGAN和LSGAN,以及自动编码器,如收缩自动编码器、VAE 等。


点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP