• 联邦学习:算法详解与系统实现
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

联邦学习:算法详解与系统实现

全新正版未拆封

43.88 4.4折 99 全新

库存2件

山东济宁
认证卖家担保交易快速发货售后保障

作者陈彦卿 著;薄列峰;[美]黄恒;顾松庠

出版社机械工业出版社

出版时间2022-04

版次1

装帧其他

上书时间2024-10-14

天吾之青豆的书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 陈彦卿 著;薄列峰;[美]黄恒;顾松庠
  • 出版社 机械工业出版社
  • 出版时间 2022-04
  • 版次 1
  • ISBN 9787111703495
  • 定价 99.00元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 352页
  • 字数 478千字
【内容简介】
本书首先介绍联邦学习的定义和发展历史,按类别介绍联邦学习算法和发展现状,介绍联邦学习的应用场景,以及相关安全机器学习的技术。然后我们将介绍zui新zui前沿的联邦学习算法,用数科系统作为实例,对联邦学习系统构建和实现进行讲解。zui后我们将介绍数科自研的基于区块链的联邦学习技术。
【作者简介】


    薄列峰,科技集团副裁、硅谷研发部负责人。曾担任包括neuri、cvpr、iccv、eccv、aaai、dm等在内的多个人工智能会议程序委员会委员。在国际会议和期刊上合计发表80余篇,被引用10186次,h指数44。其博士荣获百篇博士奖,rgbd物体识别荣获机器人领域学术会议icra佳计算机视觉奖。
【目录】
前言

部分 联邦学习基础知识 

第 1 章 联邦学习概述                   2 

1.1 什么是联邦学习                     2 

1.1.1 联邦学习的发展历史            3 

1.1.2 联邦学习的工作流程            4 

1.1.3 联邦学习的分类                  6 

1.2 联邦学习的应用和挑战           8 

1.2.1 联邦学习的应用现状           8 

1.2.2 联邦学习的核心挑战           9 

1.3 分布式机器学习与联邦学习    10 

1.3.1 分布式机器学习的发展历史  10 

1.3.2 分布式机器学习概述            11 

1.3.3 分布式机器学习与联邦学习的共同发展                                13 

1.4 总结                                    14 

第 2 章 联邦学习应用场景           15 

2.1 联邦学习与金融                    15 

2.2 联邦学习与生物医学              17 

2.3 联邦学习与计算机视觉           19 

2.4 联邦学习与自然语言处理        22 

2.5 联邦学习与边缘计算和云计算                                   25 

2.6 联邦学习与计算机硬件          27 

2.7 总结                                   29 

第 3 章 常用隐私保护技术          30 

3.1 面向隐私保护的机器学习      30 

3.1.1 概述                                30 

3.1.2 面向隐私保护的机器学习发展                            33 

3.2 常用的隐私保护技术             34 

3.2.1 差分隐私                          34 

3.2.2 安全多方计算                    41 

3.2.3 同态加密                          49 

3.3 总结                                   66 

第二部分 联邦学习算法详述 

第 4 章 纵向联邦树模型算法       68 

4.1 树模型简介                          68 

4.2 纵向联邦随机森林算法          69 

4.2.1 算法结构                           69 

4.2.2 算法详述                           70 

4.2.3 安全性分析                        71 

4.3 纵向联邦梯度提升算法           75 

4.3.1 XGBoost 算法                    76 

4.3.2 SecureBoost 算法              76 

4.3.3 所提算法详述                     77 

4.4 总结                                    78 

第 5 章 纵向联邦线性回归算法     79 

5.1 纵向联邦线性回归                 80 

5.1.1 算法训练过程                     81 

5.1.2 算法预测过程                     81 

5.1.3 纵向联邦的一个困境           82 

5.2 联邦多视角线性回归              82 

5.2.1 基于 BFGS 的二阶优化方法                                   84 

5.2.2 安全计算协议                     87 

5.3 总结                                    92 

第 6 章 纵向联邦核学习算法        93 

6.1 引言                                    93 

6.2 双随机核方法                       95 

6.2.1 问题定义                           95 

6.2.2 核方法的简要介绍              96 

6.2.3 随机傅里叶特征近似           98 

6.2.4 双随机梯度                        98 

6.3 所提算法                              99 

6.3.1 问题表示                            100 

6.3.2 算法结构                            100 

6.3.3 算法设计                            101 

6.3.4 场景案例                            103 

6.4 理论分析                               105 

6.4.1 收敛性分析                         105 

6.4.2 安全性分析                         105 

6.4.3 复杂度分析                         106 

6.5 实验验证                               106 

6.5.1 实验设置                            106 

6.5.2 实验结果和讨论                   107 

6.6 总结                                      110 

第 7 章 异步纵向联邦学习算法       111 

7.1 引言                                      111 

7.2 相关工作                                112 

7.2.1 现有工作概述                       112 

7.2.2 SGD 类算法回顾                   113 

7.3 问题表示                                 114 

7.4 所提算法                                 114 

7.4.1 算法框架                              114 

7.4.2 算法详述                              116 

7.4.3 场景案例                              119 

7.5 理论分析                                 120 

7.5.1 收敛性分析                           120 

7.5.2 安全性分析                           123 

7.5.3 复杂度分析                           124 

7.6 实验验证                                 125 

7.6.1 实验设置                               125 

7.6.2 实验结果和讨论                     127 

7.7 总结                                        1
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP