经典力学与天体力学中的数学问题
正版现货,首页空白处有印章,内页干净无字迹无写划,如介意有印章请勿拍。
¥
165
九品
仅1件
作者阿诺德(Arnold.L.I) 著
出版社科学出版社
出版时间2009-01
版次1
装帧精装
货号h01
上书时间2023-11-21
商品详情
- 品相描述:九品
图书标准信息
-
作者
阿诺德(Arnold.L.I) 著
-
出版社
科学出版社
-
出版时间
2009-01
-
版次
1
-
ISBN
9787030235077
-
定价
96.00元
-
装帧
精装
-
开本
16开
-
纸张
胶版纸
-
页数
518页
-
字数
653千字
-
正文语种
英语
- 【内容简介】
-
Thisworkdescribesthefundamentalprinciples,problems,andmethodsofclassicalmechanics.Themainattentionisdevotedtothemathematicalsideofthesubject.Theauthorshaveendeavoredtogiveanexpositionstressingtheworkingapparatusofclassicalmechanics.Thebookissignificantlyexpandedcomparedtothepreviousedition.Theauthorshaveaddedtwochaptersonthevariationalprinciplesandmethodsofclassicalmechanicsaswellasontensorinvariantsofequationsofdynamics.Moreover,variousothersectionshavebeenrevised,addedorexpanded.Themainpurposeofthebookistoacquaintthereaderwithclassicalmechanicsasawhole,inbothitsclassicalanditscontemporaryaspects.Thebookaddressesallmathematicians,physicistsandengineers.
- 【目录】
-
1BasicPrinciplesofClassicalMechanics
1.1NewtonianMechanics
1.1.1Space,Time,Motion
1.1.2Newton-LaplacePrincipleofDeterminacy
1.1.3PrincipleofRelativity
1.1.4PrincipleofRelativityandForcesofInertia
1.1.5BasicDynamicalQuantities.ConservationLaws
1.2LagrangianMechanics
1.2.1PreliminaryRemarks
1.2.2VariationsandExtremals
1.2.3LagrangesEquations
1.2.4PoincaresEquations
1.2.5MotionwithConstraints
1.3HamiltonianMechanics
1.3.1SymplecticStructuresandHamiltonsEquations
1.3.2GeneratingFunctions
1.3.3SymplecticStructureoftheCotangentBundle
1.3.4TheProblemofnPointVortices
1.3.5ActioninthePhaseSpace
1.3.6IntegralInvariant
1.3.7ApplicationstoDynamicsofIdealFluid
1.4VakonomicMechanics
1.4.1LagrangesProblem
1.4.2VakonomicMechanics
1.4.3PrincipleofDeterminacy
1.4.4HamiltonsEquationsinRedundantCoordinates
1.5HamiltonianFormalismwithConstraints
1.5.1DiracsProblem
1.5.2Duality
1.6RealizationofConstraints
1.6.1VariousMethodsofRealizationofConstraints
1.6.2HolonomicConstraints
1.6.3AnisotropicFriction
1.6.4AdjointMasses
1.6.5AdjointMassesandAnisotropicFriction
1.6.6SmallMasses
2Then-BodyProblem
2.1TheTwo-BodyProblem
2.1.1Orbits
2.1.2Anomalies
2.1.3CollisionsandRegularization
2.1.4GeometryofKeplersProblem
2.2CollisionsandRegularization
2.2.1NecessaryConditionforStability
2.2.2SimultaneousCollisions
2.2.3BinaryCollisions
2.2.4SingularitiesofSolutionsofthen-BodyProblem
2.3ParticularSolutions
2.3.1CentralConfigurations
2.3.2HomographicSolutions
2.3.3EffectivePotentialandRelativeEquilibria
2.3.4PeriodicSolutionsintheCaseofBodiescfEqualMasses
2.4FinalMotionsintheThree-BodyProblem
2.4.1ClassificationoftheFinalMotionsAccordingtoChazy.
2.4.2SymmetryofthePastandFuture
2.5RestrictedThree-BodyProblem
2.5.1EquationsofMotion.TheJacobiIntegral
2.5.2RelativeEquilibriaandHillRegions
2.5.3HillsProblem
2.6ErgodicTheoremsofCelestialMechanics
2.6.1StabilityintheSenseofPoisson
2.6.2ProbabilityofCapture
2.7DynamicsinSpacesofConstantCurvature
2.7.1GeneralizedBertrandProblem
2.7.2KeplersLaws
2.7.3CelestialMechanicsinSpacesofConstantCurvature
2.7.4PotentialTheoryinSpacesofConstantCurvature
3SymmetryGroupsandOrderReduction.
3.1SymmetriesandLinearIntegrals
3.1.1NSthersTheorem
3.1.2SymmetriesinNon-HolonomicMechanics
3.1.3SymmetriesinVakonomicMechanics
3.1.4SymmetriesinHamiltonianMechanics
3.2ReductionofSystemswithSymmetries
3.2.1OrderReduction(LagrangianAspect)
3.2.2OrderReduction(HamiltonianAspect)
3.2.3Examples:FreeRotationofaRigidBodyandtheThreeBodyProblem
3.3RelativeEquilibriaandBifurcationofIntegralManifolds
3.3.1RelativeEquilibriaandEffectivePotential
3.3.2IntegralManifolds,RegionsofPossibleMotion,andBifurcationSets
3.3.3TheBifurcationSetinthePlanarThree-BodyProblem
3.3.4BifurcationSetsandIntegralManifoldsintheProblemofRotationofaHeavyRigidBodywithaFixedPoint
4VariationalPrinciplesandMethods
4.1GeometryofRegionsofPossibleMotion
4.1.1PrincipleofStationaryAbbreviatedAction
4.1.2GeometryofaNeighbourhoodoftheBoundary
4.1.3RiemannianGeometryofRegionsofPossibleMotionwithBoundary
4.2PeriodicTrajectoriesofNaturalMechanicalSystems
4.2.1RotationsandLibrations
4.2.2LibrationsinNon-Simply-ConnectedRegionsofPossibleMotion
4.2.3LibrationsinSimplyConnectedDomainsandSeifertsConjecture
4.2.4PeriodicOscillationsofaMulti-LinkPendulum
4.3PeriodicTrajectoriesofNon-ReversibleSystems
4.3.1SystemswithGyroscopicForcesandMultivaluedFunctionals
4.3.2ApplicationsoftheGeneralizedPoincareGeometricTheorem
4.4AsymptoticSolutions.ApplicationtotheTheoryofStabilityofMotion
4.4.1ExistenceofAsymptoticMotions
4.4.2ActionFunctioninaNeighbourhoodofanUnstableEquilibriumPosition
4.4.3InstabilityTheorem
4.4.4Multi-LinkPendulumwithOscillatingPointofSuspension
4.4.5HomoclinicMotionsClosetoChainsofHomoclinicMotions
5IntegrableSystemsandIntegrationMethods
5.1BriefSurveyofVariousApproachestoIntegrabilityofHamiltonianSystems
5.1.1Quadratures
5.1.2CompleteIntegrability
5.1.3NormalForms
5.2CompletelyIntegrableSystems
5.2.1Action-AngleVariables
5.2.2Non-CommutativeSetsofIntegrals
5.2.3ExamplesofCompletelyIntegrableSystems
5.3SomeMethodsofIntegrationofHamiltonianSystems
5.3.1MethodofSeparationofVariables
5.3.2MethodofL-APairs
5.4IntegrableNon-HolonomicSystems
5.4.1DifferentialEquationswithInvariantMeasure
5.4.2SomeSolvedProblemsofNon-HolonomicMechanics.
6PerturbationTheoryforIntegrableSystems
6.1AveragingofPerturbations
6.1.1AveragingPrinciple
6.1.2ProcedureforEliminatingFastVariables.Non-ResonantCase
6.1.3ProcedureforEliminatingFastVariables.Resonantase
6.1.4AveraginginSingle-FrequencySystems
6.1.5AveraginginSystemswithConstantFrequencies
6.1.6AveraginginNon-ResonantDomains
6.1.7EffectofaSingleResonance
6.1.8AveraginginTwo-FrequencySystems
6.1.9AveraginginMulti-FrequencySystems
6.1.10AveragingatSeparatrixCrossing
6.2AveraginginHamiltonianSystems
6.2.1ApplicationoftheAveragingPrinciple
6.2.2ProceduresforEliminatingFastVariables
6.3KAMTheory
6.3.1UnperturbedMotion.Non-DegeneracyConditions
6.3.2InvariantToriofthePerturbedSystem
6.3.3SystemswithTwoDegreesofFreedom
6.3.4DiffusionofSlowVariablesinMultidimensionalSystemsanditsExponentialEstimate
6.3.5DiffusionwithoutExponentiallySmallEffects
6.3.6VariantsoftheTheoremonInvariantTori
6.3.7KAMTheoryforLower-DimensionalTori
6.3.8VariationalPrincipleforInvariantTori.Cantori
6.3.9ApplicationsofKAMTheory
6.4AdiabaticInvariants
6.4.1AdiabaticInvarianceoftheActionVariableinSingle-FrequencySystems
……
7Non-IntegrableSystems
8TheoryofSmallOscillations
9TensorInvariantsofEquationsofDynamics
RecommendedReading
Bibliography
IndexofNames
SubjectIndex
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价