• 电力市场大数据分析
21年品牌 40万+商家 超1.5亿件商品

电力市场大数据分析

新华书店全新正版,极速发货,假一罚十,可开电子发票,请放心购买。

103.26 6.5折 158 全新

库存17件

天津西青
认证卖家担保交易快速发货售后保障

作者陈启鑫 等

出版社科学出版社

ISBN9787030715166

出版时间2022-10

装帧平装

开本16开

定价158元

货号1202750929

上书时间2024-10-18

果然是好书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录
Contents

1 Introduction to Power Market Data 1

1.1 Overview of Electricity Markets 1

1.2 Organization and Data Disclosure of Electricity Market 4

1.2.1 Transaction Data 5

1.2.2 Price Data 7

1.2.3 Supply and Demand Data 7

1.2.4 System Operation Data 8

1.2.5 Forecast Data 8

1.2.6 Confidential Data 9

1.3 Conclusions 9

References 9

PartⅠ Load Modeling and Forecasting

2 Load Forecasting with Smart Meter Data 13

2.1 Introduction 13

2.2 Framework 14

2.3 Ensemble Learning for Probabilistic Forecasting 16

2.3.1 Quantile Regression Averaging 17

2.3.2 Factor Quantile Regression Averaging 18

2.3.3 LASSO Quantile Regression Averaging 18

2.3.4 Quantile Gradient Boosting Regression Tree 19

2.3.5 Rolling Window-Based Forecasting 20

2.4 Case Study 20

2.4.1 Experimental Setups 2

2.4.2 Evaluation Criteria 21

2.4.3 Experimental Results 22

2.5 Conclusions 24

References 24

3 Load Data Cleaning and Forecasting 27

3.1 Introduction 27

3.2 Characteristics of Load Profiles 29

3.2.1 Low-Rank Property of Load Profiles 29

3.2.2 Bad Data in Load Profiles 30

3.3 Methodology 31

3.3.1 Framework 31

3.3.2 Singular Value Thresholding (SVT) 32

3.3.3 Quantile RF Regression 34

3.3.4 Load Forecasting 35

3.4 Evaluation Criteria 35

3.4.1 Data Cleaning-Based Criteria 35

3.4.2 Load Forecasting-Based Criteria 35

3.5 Case Study 36

3.5.1 Result of Data Cleaning 36

3.5.2 Day Ahead Point Forecast 37

3.5.3 Day Ahead Probabilistic Forecast 38

3.6 Conclusions 40

References 40

4 Monthly Electricity Consumption Forecasting 43

4.1 Introduction 43

4.2 Framework 46

4.2.1 Data Collection and Treatment 46

4.2.2 SVECM Forecasting 47

4.2.3 Self-adaptive Screening 48

4.2.4 Novelty and Characteristics of SAS-SVECM 48

4.3 Data Collection and Treatment 48

4.3.1 Data Collection and Tests 49

4.3.2 Seasonal Adjustments Based on X-12-ARIMA 49

4.4 SVECM Forecasting 49

4.4.1 VECM Forecasting 49

4.4.2 Time Series Extrapolation Forecasting 52

4.5 Self-adaptive Screening 53

4.5.1 Influential EEF Identification 53

4.5.2 Influential EEF Grouping 53

4.5.3 Forecasting Performance Evaluation Considering Different EEF Groups 55

4.6 Case Study 56

4.6.1 Basic Data and Tests 56

4.6.2 Electricity Consumption Forecasting Performance Without SAS 58

4.6.3 EC Forecasting Performance with SAS 61

4.6.4 SAS-SVECM Forecasting Comparisons with Other Forecasting Methods 65

4.7 Conclusions 67

References 67

5 Probabilistic Load Forecasting 71

5.1 Introduction 71

5.2 Data and Model 73

5.2.1 Load Dataset Exploration 73

5.2.2 Linear Regression Model Considering Recency-Effects 73

5.3 Pre-Lasso Based Feature Selection 76

5.4 Sparse Penalized Quantile Regression (Quantile-Lasso) 77

5.4.1 Problem Formulation 77

5.4.2 ADMM Algorithm 78

5.5 Implementation 80

5.6 Case Study 81

5.6.1 Experiment Setups 81

5.6.2 Results 82

5.7 Concluding Remarks 86

References 86

Part Ⅱ Electricity Price Modeling and Forecasting

6 Subspace Characteristics of LMP Data 91

6.1 Introduction 91

6.2 Model and Distribution of LMP 93

6.3 Methodology 

6.3.1 Problem Formulation 96

6.3.2 Basic Framework 97

6.3.3 Principal Component Analysis 98

6.3.4 Recursive Basis Search (Bottom-Up) 98

6.3.5 Hyperplane Detection (Top-down) 100

6.3.6 Short Summary 103

6.4 Case Study 103

6.4.1 Case 1: IEEE 30-Bus System 104

6.4.2 Case 2: IEEE 118-Bus System 106

6.4.3 Case 3: Illinois 200-Bus System 106

6.4.4 Case 4: Southwest Power Pool (SPP) 107

6.4.5 Time Consumption 108

6.5 Discussion and Conclusion 110

6.5.1 Discussion on Potential Applications 110

6.5.2 Conclusion 110

References 111

7 Day-Ahead Electricity Price Forecasting 113

7.1 Introduction 113

7.2 Problem Formulation 116

7.2.1 Decomposition of LMP 116

7.2.2 Short-Term Forecast for Each Component 117

7.2.3 Summation and Stacking of Individual Forecasts 118

7.3 Methodology 119

7.3.1 Framework 119

7.3.2 Feature Engineering 121

7.3.3 Regression Model Selection and Parameter Tuning 122

7.3.4 Model Stacking with Robust Regression 123

7.3.5 Metrics 124

7.4 Case Study 124

7.4.1 Model Selection Results 125

7.4.2 Componential Results 126

7.4.3 Stacking Results (Overall Improvements) 128

7.4.4 Error Distribution Analysis 129

7.5 Conclusion 132

References 132

8 Economic Impact of Price Forecasting Error 135

8.1 Introduction 135

8.2 General Bidding Models 137

8.2.1 Deterministic Bidding Model 138

8.2.2 Stochastic Bidding Model 139

8.3 Methodology and Framework 141

8.3.1 Forecasting Error Modeling 141

8.3.2 Multiparametric Linear Programming (MPLP)Theory 141

8.3.3 Error Impact Formulation 142

8.3.4 Overall Framework 144

8.4 Case Study 145

8.4.1 Measurement of STPF Error Level 145

8.4.2 Case 1: LSE with Demand Response Programs 147

8.4.3 Case 2: LSE with ESS 148

8.4.4 Case 3: Stochastic LSE Bidding Model 151

8.4.5 Time Consumption 153

8.5 Conclusions and Future Work 153

References 153

9 LMP Forecasting and FTR Speculation 155

9.1 Introduction 155

9.2 Stochastic Optimization Model 158

9.2.1 Model of FTR Portfolio Construction Problem 158

9.2.2 Scenario-Based Stochastic Optimization Model 159

Contents

9.3 Data-Dnven Framework 160

9.4 Methodology 161

9.4.1 Clustering 161

9.4.2 Mid-Term Probabilistic Forecasting 164

9.4.3 Copulas for Dependence Modeling 165

9.4.4 Training and Evaluation Timeline 166

9.4.5 Scenario Generation 167

9.5 Case Study 167

9.5.1 Data Description 167

9.5.2 Comparison Methods 168

9.5.3 Statistical Validation of Quantile Regression 169

9.5.4 Scenario Quality Evaluation 169

9.5.5 Impact of Node Reduction with Clustering 171

9.5.6 Revenue and Risk Estimation 171

9.5.7 Sensitivity Analysis on the Number of Clusters 175

9.6 Conclusion 177

References 177

Part Ⅲ Market Bidding Behavior Analysis

10 Pattern Extraction for Bidding Behaviors 183

10.1 Introduction 183

10.2 Assumptions and Proposed Framework 186

10.2.1 Model Assumptions 186

10.2.2 Bidding Data Format 187

10.2.3 Data-Driven Analysis Framework 188

10.3 Data Standardization Processing 188

10.3.1 Filtering Available Capacities 188

10.3.2 Sampling Bidding Curves 189

10.3.3 Unifying Data Length 189

10.3.4 Clipping Extreme Prices 191

10.4 Adaptive Clustering of Bidding Behaviors 191

10.4.1 Distance Measurement 192

10.4.2 K-Medoids Clustering 192

10.4.3 Adaptive Clustering Procedure 192

10.4.4 Clustering Algorithm 193

10.5 AEM Data Description 194

10.5.1 Description of Market Participants 194

10.5.2 Description of Bidding Data 195

10.6 Bidding Pattern Analysis 195

10.6.1 Parameter Setting 196

10.6.2 Bidding Patterns of DUs by Fuel Type 197

10.6.3 Comparison of Similar DUs 201

10.6.4 Discussion 203

10.7 Feature Analysis on Bids 203

10.7.1 Discrete Aggregation Feature 204

10.7.2 Probability Distribution Feature 205

10.7.3 Time Distribution Feature 206

10.8 Conclusions 206

References 208

11 Aggregated Supply Curves Forecasting 211

11.1 Introduction 211

11.2 Market and Framework 214

11.2.1 Market Descriptions 214

11.2.2 Fore

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP