内容摘要 本书系统介绍了数据预处理、数据仓库和数据挖掘的原理、方法及应用技术,以及使用目前在数据分析与挖掘领域非常热门的Python语言对数据进行分析处理及挖掘建模。本书一共有11章,分为2篇。一为理论篇,第1章绪论介绍了数据分析与挖掘领域中的一些基本理论、研究方法等,也简单介绍Python数据分析与挖掘相关的知识;第2-6章按照数据分析与挖掘的过程安排各章节,介绍数据预处理的方法技术、数据仓库的构建与OLAP技术、数据挖掘原理及算法(包括关联规则挖掘方法、聚类分析方法、分类规则挖掘方法,在每章中,采用小数据集为例详细介绍各种挖掘算法)。二为实验篇,第7章介绍采用python进行数据预处理的各种常见方法、技术;第8章介绍基于SQL Server 2022构建数据仓库及OLAP的过程;第9-11章为使用Python进行关联规则、聚类、分类挖掘算法的实践,在内容的安排上,先采用小数据集进行初步实践,然后再采用大数据集进行综合实践,对于综合实践,按照:挖掘目标数据的探索分析、数据预处理及数据抽取、挖掘模型的构建及可视化、分析挖掘结果的顺序进行,通过完整的案例,加深对数据挖掘算法的理解,最终让读者由易到难、很好地掌握用Python进行数据分析与挖掘的完整过程。本书采用理论与实践相结合的方式,以小数据集为例详细介绍各种挖掘算法,使读者更易掌握挖掘算法的基本原理及过程;使用热门实用的Python语言实践数据预处理及各种挖掘算法,实战性强,也符合目前数据分析与挖掘的发展趋势。既适合Python数据分析与数据挖掘初学者、大数据从业人员阅读,也适合高等院校和培训机构大数据与人工智能相关专业的师生教学参考。
以下为对购买帮助不大的评价