机器学习设计模式
①全新正版,现货速发,7天无理由退换货②天津、成都、无锡、广东等多仓就近发货,订单最迟48小时内发出③无法指定快递④可开电子发票,不清楚的请咨询客服。
¥
66.66
5.2折
¥
128
全新
库存24件
作者Valliappa Lakshmanan, Sara Robinson, Michael Munn著
出版社东南大学出版社
ISBN9787564196776
出版时间2022-09
装帧其他
开本其他
定价128元
货号3855757
上书时间2024-10-17
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
瓦利阿帕·拉克什曼南是Google云计算平台专家服务部门的技术主管。他希望将机器学习普及化,让任何人、从任何地方,在无需深入了解统计学、编程知识,也无需购买大量硬件的情况下使用Google云平台提供的很好架构。
目录
本书中的设计模式针对机器学习中反复出现的问题给出最佳实践和解决方案。作者为来自谷歌的三位工程师, 他们整理了已证实的方法, 帮助数据科学家解决整个机器学习过程中的常见问题。这些设计模式将数百位专家的经验转化成直接、易懂的建议。在这本书中, 你会找到关于数据和问题表示、操作化、可重复性、可复现性、灵活性、可解释性和公平性的30种模式的详细解释。每个模式包括对问题的描述、各种可能的解决方案, 以及针对你的情况选择最佳技术的建议。
内容摘要
识别和减轻在训练、评估以及部署机器学习模型时的常见挑战
为不同类型的机器学习模型表示数据,包括嵌入、特征交叉等
针对具体问题选择合适的模型类型
使用检查点、分发策略和超参数优化,建立一个鲁棒的训练循环
部署可扩展的机器学习系统,通过它你可以再训练和更新以反映新的数据
为用户解释模型的预测结果,确保模型公平地对待用户
提高模型的准确性、可复现性和弹性
— 没有更多了 —
以下为对购买帮助不大的评价