普林斯顿概率论读本
①全新正版,现货速发,7天无理由退换货②天津、成都、无锡、广东等多仓就近发货,订单最迟48小时内发出③无法指定快递④可开电子发票,不清楚的请咨询客服。
¥
78.96
5.7折
¥
139
全新
库存113件
作者[美] 史蒂文·J. 米勒(Steven J. Miller)
出版社人民邮电出版社
ISBN9787115543776
出版时间2020-09
装帧平装
开本16开
定价139元
货号30973721
上书时间2024-10-14
商品详情
- 品相描述:全新
- 商品描述
-
导语摘要
“本书知识面广博,并且用清晰、轻松的语言来阐释高度形式化的问题,仿佛一位循循善诱的教授在耐心讲述。对于学习传统教材的学生而言,本书是非常好的补充。本书不仅值得在教育界推广,也适合统计学家用于探究他们死记硬背下来的基本定理。”——H.VanDykeParunak,ComputingReviews“正如英文版副书名所说的那样,本书清晰、直观地呈现了‘理解机会所需的全部工具’。对于已经很好地理解了微积分的学生而言,将对概率论的讨论与这些主题背后的微积分知识相结合大有裨益。”——MAAReviews“我将本书推荐给所有研究统计学以及对统计学感兴趣的人。”——SingalakhaMenziwa,Mathemafrica“这本书有趣、引人入胜且通俗易懂,价值非凡。它用对话的口吻邀请学生深入探索其中的材料和概念,好像米勒就站在学生面前讲授这些主题,帮助他们思考问题一样。”——JohnImbrie,弗吉尼亚大学对于学生来说,学习概率论及其众多应用、技术和方法似乎非常费力且令人生畏,而这正是本书的用武之地。这本通俗易懂的学习指南旨在用作概率论的独立教材或相关课程的补充材料,可帮助学生轻松地学习概率论知识并取得良好效果。
本书基于史蒂文·J.米勒在布朗大学、曼荷莲学院和威廉姆斯学院教授的课程而作。米勒通过先修课程材料、各种难度的问题及证明对概率论这一数学领域进行了详细介绍。探索每个主题时,米勒首先引导学生运用直觉,然后才深入技术细节。本书涵盖的主题很广,并且对材料加以重复以强化知识。读完本书,学生不仅能掌握概率论,还能为将来学习其他课程打下基础。
作者简介
史蒂文·J. 米勒(Steven J. Miller) 美国耶鲁大学数学与物理学学士,普林斯顿大学数学硕士及博士。现任威廉姆斯学院数学教授、Erdos研究所教职研究员,还是美国数学协会和Phi Beta Kappa荣誉学会成员。主要研究方向有数论、线性代数、概率论和统计学。
目录
第 一部分 一般性理论
第 1章 引言 2
1.1 生日问题 3
1.1.1 陈述问题 3
1.1.2 解决问题 6
1.1.3 对问题和答案的推广:效率 11
1.1.4 数值检验 14
1.2 从投篮到几何级数 16
1.2.1 问题和解答 16
1.2.2 相关问题 22
1.2.3 一般问题的解决技巧 25
1.3 赌博 28
1.3.1 2008年超级碗赌注 29
1.3.2 预期收益 29
1.3.3 对冲的价值 31
1.3.4 结论 32
1.4 总结 33
1.5 习题 35
第 2章 基本概率定律 41
2.1 悖论 42
2.2 集合论综述 44
2.2.1 编程漫谈 48
2.2.2 无穷大的大小和概率 50
2.2.3 开集和闭集 52
2.3 结果空间、事件和概率公理 54
2.4 概率公理 59
2.5 基本概率规则 61
2.5.1 全概率公式 62
2.5.2 并的概率 63
2.5.3 包含的概率 66
2.6 概率空间和σ代数 67
2.7 附录:实验性地找出规律 72
2.7.1 乘积求导法则 73
2.7.2 并的概率 74
2.8 总结 75
2.9 习题 75
第3章 计数I:纸牌 80
3.1 阶乘和二项式系数 81
3.1.1 阶乘函数 81
3.1.2 二项式系数 85
3.1.3 总结 90
3.2 扑克牌 90
3.2.1 规则 91
3.2.2 最小牌型 93
3.2.3 对子 95
3.2.4 两对 98
3.2.5 三条 99
3.2.6 顺子、同花和同花顺 99
3.2.7 葫芦和铁支 100
3.2.8 扑克牌型练习:I 102
3.2.9 扑克牌型练习:II 103
3.3 单人纸牌 105
3.3.1 克朗代克纸牌 105
3.3.2 Aces Up纸牌 108
3.3.3 《空当接龙》 110
3.4 桥牌 112
3.4.1 井字游戏 113
3.4.2 桥牌牌局的个数 115
3.4.3 将牌的分配 121
3.5 附录:计算概率的代码 125
3.5.1 将牌的分配和代码 125
3.5.2 扑克牌型的代码 127
3.6 总结 130
3.7 习题 130
第4章 条件概率、独立性和贝叶斯定理 134
4.1 条件概率 135
4.1.1 猜测条件概率公式 137
4.1.2 期望计数法 138
4.1.3 文氏图法 140
4.1.4 蒙提霍尔问题 141
4.2 一般乘法法则 142
4.2.1 陈述. 142
4.2.2 扑克牌的例子 143
4.2.3 帽子问题和纠错码 144
4.2.4 高等注解:条件概率的定义 145
4.3 独立性 146
4.4 贝叶斯定理 148
4.5 划分和全概率法则 154
4.6 回顾贝叶斯定理 157
4.7 总结 158
4.8 习题 158
第5章 计数II:容斥原理 162
5.1 阶乘和二项式问题 163
5.1.1 “有多少个”与“概率是什么” 163
5.1.2 选组 165
5.1.3 循环次序 166
5.1.4 选择套装 168
5.2 容斥方法 170
5.2.1 容斥原理的特例 170
5.2.2 容斥原理的陈述 173
5.2.3 容斥公式的证明 175
5.2.4 利用容斥原理:同花色牌型 177
5.2.5 从“至少”到“恰好”的方法 180
5.3 错排 182
5.3.1 错排的个数 183
5.3.2 错排数的概率 184
5.3.3 错排试验的代码 185
5.3.4 错排的应用 187
5.4 总结 188
5.5 习题 190
第6章 计数III:高等组合学 193
6.1 基本计数 194
6.1.1 枚举法I 194
6.1.2 枚举法II 195
6.1.3 有放回抽样和无放回抽样 199
6.2 单词排序 207
6.2.1 排序方法数 208
6.2.2 多项式系数 210
6.3 划分 213
6.3.1 饼干问题 213
6.3.2 彩票 216
6.3.3 其他划分 220
6.4 总结 223
6.5 习题 223
第二部分 介绍随机变量
第7章 离散型随机变量 228
7.1 离散型随机变量:定义 228
7.2 离散型随机变量:概率密度函数 230
7.3 离散型随机变量:累积分布函数 233
7.4 总结 241
7.5 习题 243
第8章 连续型随机变量 246
8.1 微积分基本定理 247
8.2 概率密度函数和累积分布函数:定义 259
8.3 概率密度函数和累积分布函数:例子 251
8.4 单元素事件的概率 256
8.5 总结 258
8.6 习题 259
第9章 工具:期望 262
9.1 微积分预备知识 263
9.2 期望值和矩 265
9.3 均值和方差 268
9.4 联合分布 273
9.5 期望的线性性质 277
9.6 均值和方差的性质 282
9.7 偏斜度与峰度 287
9.8 协方差 287
9.9 总结 288
9.10 习题. 289
第 10章 工具:卷积和变量替换 292
10.1 卷积:定义和性质 293
10.2 卷积:掷骰子的例子 296
10.2.1 理论计算 296
10.2.2 卷积码 297
10.3 多变量的卷积 298
10.4 变量替换公式:叙述 301
10.5 变量替换公式:证明 305
10.6 附录:随机变量的乘积与商 309
10.6.1 乘积的概率密度函数 310
10.6.2 商的概率密度函数 311
10.6.3 例子:指数分布的商 311
10.7 总结 313
10.8 习题 313
第 11章 工具:微分恒等式 317
11.1 几何级数的例子 318
11.2 微分恒等式法 321
11.3 在二项分布随机变量上的应用 322
11.4 在正态分布随机变量上的应用 326
11.5 在指数分布随机变量上的应用 328
11.6 总结 330
11.7 习题 331
第三部分 特殊分布
第 12章 离散分布 334
12.1 伯努利分布 334
12.2 二项分布 335
12.3 多项分布 339
12.4 几何分布 341
12.5 负二项分布 343
12.6 泊松分布 347
12.7 离散均匀分布 350
12.8 习题 353
第 13章 连续型随机变量:均匀分布与指数分布 357
13.1 均匀分布 357
13.1.1 均值和方差 358
13.1.2 服从均匀分布的随机变量之和 359
13.1.3 例子 362
13.1.4 均匀地生成随机数 364
13.2 指数分布 365
13.2.1 均值和方差 366
13.2.2 服从指数分布的随机变量之和 369
13.2.3 服从指数分布的随机变量的例子与应用 372
13.2.4 从指数分布中生成随机数 373
13.3 习题 376
第 14章 连续型随机变量:正态分布 379
14.1 确定标准化常数 380
14.2 均值和方差 383
14.3 服从正态分布的随机变量之和 386
14.3.1 情形1:μX = μY = 0且σX^2 = σY^ 2 = 1 388
14.3.2 情形2:一般化的μX、μY 和σX^2、σY^2 390
14.3.3 两个服从正态分布的随机变量之和:更快的代数运算 393
14.4 从正态分布中生成随机数 394
14.5 例子与中心极限定理 400
14.6 习题 401
第 15章 伽马函数与相关分布 405
15.1 Γ(s) 的存在性 405
15.2 Γ(s) 的函数方程 407
15.3 阶乘函数与Γ(s) 411
15.4 Γ(s) 的特殊值 412
15.5 贝塔函数与伽马函数 414
15.5.1 基本关系式的证明 415
15.5.2 基本关系式和Γ(1=2) 417
15.6 正态分布与伽马函数 418
15.7 随机变量族 419
15.8 附录:余割等式的证明 421
15.8.1 余割等式:第 一种证明 421
15.8.2 余割等式:第二种证明 425
15.8.3 余割等式:s = 1=2的特殊情形 427
15.9 柯西分布 429
15.10 习题 431
第 16章 卡方分布 433
16.1 卡方分布的起源 434
16.2 X ~x^2(1) 的均值与方差 436
16.3 卡方分布与服从正态分布的随机变量之和 437
16.3.1 直接积分求平方和 439
16.3.2 利用变量替换定理求平方和 440
16.3.3 卷积法求平方和 444
16.3.4 服从卡方分布的随机变量之和 446
16.4 总结 447
16.5 习题 449
第四部分 极限定理
第 17章 不等式和大数定律 452
17.1 不等式 452
17.2 马尔可夫不等式 454
17.3 切比雪夫不等式 456
17.3.1 陈述 456
17.3.2 证明 458
17.3.3 正态分布与均匀分布的例子 460
17.3.4 指数分布的例子 462
17.4 布尔不等式与邦弗伦尼不等式 462
17.5 收敛类型 464
17.5.1 依分布收敛 464
17.5.2 依概率收敛 466
17.5.3 几乎必然收敛与必然收敛 467
17.6 弱大数定律与强大数定律 467
17.7 习题 469
第 18章 斯特林公式 472
18.1 斯特林公式与概率 474
18.2 斯特林公式与级数的收敛性 476
18.3 从斯特林公式到中心极限定理 477
18.4 积分判别法与较弱的斯特林公式 481
18.5 得到斯特林公式的基本方法 484
18.5.1 二进分解 484
18.5.2 斯特林公式的下界:I 486
18.5.3 斯特林公式的下界:II 488
18.5.4 斯特林公式的下界:III 490
18.6 静态相位与斯特公式 491
18.7 中心极限定理与斯特林公式 492
18.8 习题 494
第 19章 生成函数与卷积 496
19.1 动机 496
19.2 定义 498
19.3 生成函数的唯一性和收敛性 503
19.4 卷积I:离散型随机变量 504
19.5 卷积II:连续型随机变量 508
19.6 矩母函数的定义与性质 514
19.7 矩母函数的应用 521
19.8 习题 525
第 20章 中心极限定理的证明 527
20.1 证明的关键思路 537
20.2 中心极限定理的陈述 529
20.3 均值、方差与标准差 531
20.4 标准化 532
20.5 矩母函数的相关结果 536
20.6 特殊情形:服从泊松分布的随机变量之和 538
20.7 利用MGF证明一般的CLT 541
20.8 使用中心极限定理 543
20.9 中心极限定理与蒙特卡罗积分 544
20.10 总结 546
20.11 习题 547
第 21章 傅里叶分析与中心极限定理 552
21.1 积分变换 553
21.2 卷积与概率论 557
21.3 中心极限定理的证明 560
21.4 总结 563
21.5 习题 564
第五部分 其他主题
第 22章 假设检验 568
22.1 Z检验 569
22.1.1 原假设与备择假设 569
22.1.2 显著性水平 570
22.1.3 检验统计量 572
22.1.4 单侧检验与双侧检验 575
22.2 p值 578
22.2.1 非凡的主张与p值 578
22.2.2 大的p值 579
22.2.3 关于p值的误解 579
22.3 t检验 581
22.3.1 估算样本方差 581
22.3.2 从z检验到t检验 582
22.4 假设检验的问题 585
22.4.1 I型错误 585
22.4.2 II型错误 585
22.4.3 错误率与司法系统 586
22.4.4 功效 587
22.4.5 效应量 588
22.5 卡方分布、拟合优度 588
22.5.1 卡方分布与方差检验 589
22.5.2 卡方分布与t分布 592
22.5.3 列表数据的拟合优度 593
22.6 双样本检验 595
22.6.1 双样本z检验:方差已知 595
22.6.2 双样本t检验:方差未知但相等 598
22.6.3 方差未知且不相等 599
22.7 总结 601
22.8 习题 602
第 23章 差分方程、马尔可夫过程和概率论 604
23.1 从斐波那契数到轮盘赌 604
23.1.1 翻倍加一策略 604
23.1.2 对斐波那契数的快速回顾 606
23.1.3 递推关系与概率 608
23.1.4 讨论与推广 609
23.1.5 轮盘赌问题的代码 610
23.2 递推关系的一般理论 612
23.2.1 表示法 612
23.2.2 特征方程 612
23.2.3 初始条件 614
23.2.4 关于不同根意味着可逆性的证明 616
23.3 马尔可夫过程 617
23.3.1 递推关系与种群动力学 617
23.3.2 一般的马尔可夫过程 619
23.4 总结 620
23.5 习题 620
第 24章 最小二乘法 622
24.1 问题的描述 622
24.2 概率论与统计学回顾 623
24.3 最小二乘法 625
24.4 习题 629
第 25章 两个著名问题与一些代码 632
25.1 婚姻 秘书问题 632
25.1.1 假设与策略 632
25.1.2 成功的概率 633
25.1.3 秘书问题的代码 637
25.2 蒙提霍尔问题 639
25.2.1 一个简单的解决方案 639
25.2.2 一种极端情形 640
25.2.3 蒙提霍尔问题的代码 641
25.3 两个随机程序 642
25.3.1 有放回取样与无放回取样 642
25.3.2 期望 643
25.4 习题 644
附录A 证明技巧(图灵社区下载)
附录B 分析学结果(图灵社区下载)
附录C 可数集与不可数集(图灵社区下载)
附录D 复分析与中心极限定理(图灵社区下载)
内容摘要
本书讲解概率论的基础内容,包括组合分析、概率论公理、条件概率、离散型随机变量、
连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂,并配有丰富的例子和大量习题,涉及物理学、生物学、化学、遗传学、博弈论、经济学等多方面的应用,极具启发性。
— 没有更多了 —
以下为对购买帮助不大的评价