神经计算建模实战:基于BrainPy
①全新正版,现货速发,7天无理由退换货②天津、成都、无锡、广东等多仓就近发货,订单最迟48小时内发出③无法指定快递④可开电子发票,不清楚的请咨询客服。
¥
68.73
7.2折
¥
95
全新
库存3件
作者王超名
出版社电子工业
ISBN9787121389238
出版时间2023-06
装帧其他
开本其他
定价95元
货号31763488
上书时间2024-10-13
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
吴思,北京大学心理与认知科学学院教授,IDG麦戈文脑科学研究所、定量生物学中心、北京大学―清华大学生命科学联合中心研究员,北京智源学者。研究领域是计算认知神经科学和类脑计算。
目录
第1 篇基础知识
第1 章编程基础知识. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.1 安装教程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Linux 与macOS 系统. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Windows 系统. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 更新版本和环境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 JIT 编译下的编程基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 JIT 编译加速. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 数据操作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 控制流. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 动力学模型的编程基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
1.3.1 积分器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 更新函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.3 突触计算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.4 运行器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4 查阅文档. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.5 本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
第2 篇神经元模型
第2 章神经元的电导模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 神经元结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 静息膜电位. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 等效电路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 电缆方程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.1 电缆方程的推导. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.2 电信号在长直纤维中的被动传播. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
2.5 动作电位. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.1 动作电位的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.2 动作电位的产生机制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.3 动作电位的远距离传播. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6 霍奇金―赫胥黎(HH)模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.1 离子通道模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.2 利用电压钳技术测量离子电流. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
2.6.3 泄漏电流的测量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6.4 INa 和IK 的测量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6.5 HH 模型的数学表达. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.7 HH 模型的编程实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.8 本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.9 拓展阅读:求解门控变量n、h、m 的表达式. . . . . . . . . . . . . . . . . . . . . . 63
2.9.1 门拉变量n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.9.2 门控变量h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.9.3 门控变量m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
第3 章简化神经元模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.1 泄漏整合发放(LIF)模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.1 LIF 模型的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.2 LIF 模型的动力学性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.3 LIF 模型的优点和缺点. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 二次整合发放(QIF)模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.1 QIF 模型的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.2 QIF 模型的动力学性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.3 θ 神经元模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3 指数整合发放(ExpIF)模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.1 ExpIF 模型的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.2 ExpIF 模型的动力学性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4 适应性指数整合发放(AdEx)模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.1 AdEx 模型的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.2 AdEx 模型的发放模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.3 利用相平面分析法研究AdEx 模型产生不同发放模式的动力学机制. . . . . 97
3.5 Izhikevich 模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.5.1 Izhikevich 模型的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
3.5.2 Izhikevich 模型的发放模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
3.5.3 用分岔分析法研究Izhikevich 模型在不同发放模式间的转换. . . . . . . . . . 107
3.6 Hindmarsh-Rose(HR)模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.6.1 Hindmarsh-Rose 模型的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.6.2 Hindmarsh-Rose 模型产生簇发放的动力学机制. . . . . . . . . . . . . . . . . . . . 112
3.6.3 Hindmarsh-Rose 模型的其他发放模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.7 泛化整合发放(GIF)模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.7.1 GIF 模型的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.7.2 GIF 模型的动力学分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.8 本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
第3 篇突触及突触可塑性模型
第4 章突触模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.1 化学突触. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.2 化学突触的现象学模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.1 电压跳变模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2.2 指数衰减模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.2.3 Alpha 函数模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2.4 双指数衰减模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.3 化学突触的生理学模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.3.1 建模离子通道的开放与关闭. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.3.2 AMPA 模型和GABAA 模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
4.3.3 NMDA 模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.3.4 GABAB 模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.4 电突触模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.5 本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
第5 章突触可塑性模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.1 突触短时程可塑性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.2 突触长时程可塑性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2.1 脉冲时序依赖可塑性(STDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2.2 赫布学习法则. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.2.3 Oja 法则. . . . . .
— 没有更多了 —
以下为对购买帮助不大的评价