计算
①全新正版,现货速发,7天无理由退换货②天津、成都、无锡、广东等多仓就近发货,订单最迟48小时内发出③无法指定快递④可开电子发票,不清楚的请咨询客服。
¥
57.08
4.5折
¥
128
全新
库存42件
作者吴翰清
出版社电子工业
ISBN9787121464997
出版时间2023-11
装帧平装
开本其他
定价128元
货号31885046
上书时间2024-10-12
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
吴翰清,毕业于西安交通大学少年班。清华大学创新领军工程博士(人工智能方向,在读)。2005年加入阿里,创建了阿里巴巴、淘宝、支付宝的安全体系,也是阿里云初创团队成员,是阿里安全从无到有、从有到强的亲历者。2017年开始致力于城市大脑的研究与建设,专注于构建机器智能系统。2017年入选MIT全球青年科技创新人才榜,是中国互联网安全领域入选TR35的第一人。2019年入选「大数据文摘」评选的「30位新生代数字经济人才」。2019年当选中国青年科技工作者协会第六届理事。公益项目“计算图书馆”发起人。目前正致力于人工智能的研究和创业。
目录
导论 ....................................................................................................................................1
第一部分 计算的诞生
第 1 章 毕达哥拉斯的困惑..............................................................................................24
数的计算 .......................................................................................................................24
从数觉到计数 .......................................................................................................24
文明古国的计算 ...................................................................................................28
毕达哥拉斯学派 ...........................................................................................................30
柏拉图的理想世界 .......................................................................................................40
第一次数学危机 ...........................................................................................................44
无理数的发现 .......................................................................................................44
芝诺悖论:无穷之辩 ...........................................................................................46
演绎推理:逻辑学和几何学 .......................................................................................51
亚里士多德的逻辑学 ...........................................................................................51
欧几里得的《几何原本》 ...................................................................................55
悖论:推理的暗面 ...............................................................................................59
第 2 章 计算之术 ............................................................................................................62
代数:字符的计算 .......................................................................................................62
符号与代数 ...................................................................................................................63
零的诞生 ...............................................................................................................63
言辞代数 ...............................................................................................................65
未知量的表示 .......................................................................................................68
还原与对消 ...........................................................................................................70
代数符号 ...............................................................................................................73
求解多项式方程 ...........................................................................................................77
从数值解到代数解 ...............................................................................................77
三次方程的求根公式 ...........................................................................................81
不可约:复数的发现 ...........................................................................................84
数系的扩张 ...........................................................................................................89
代数基本定理 .......................................................................................................92
代数的结构 ...................................................................................................................94
求解一元五次方程 ...............................................................................................94
方程根的结构 .......................................................................................................95
伽罗瓦的遗珠 .....................................................................................................101
计算工具 .....................................................................................................................108
人类计算员 .........................................................................................................109
面向机器的计算思维 .........................................................................................111
第 3 章 莱布尼茨的计算之梦 ........................................................................................116
数理逻辑的创立 .........................................................................................................117
人类思想字母表 .........................................................................................................120
思想的大衍术 .....................................................................................................121
计算之梦 .....................................................................................................................125
思维规律的研究 .........................................................................................................127
19 世纪数理逻辑的复兴 ....................................................................................127
布尔的逻辑代数 .................................................................................................129
第二部分 计算的数学基础
第 4 章 数学的基础.......................................................................................................136
第二次数学危机 .........................................................................................................136
微积分的发明 .....................................................................................................136
消失的鬼魂:贝克莱悖论 .................................................................................139
分析的严格化 .....................................................................................................140
集合论的诞生 .............................................................................................................142
无穷大有多大 .....................................................................................................142
对角线方法 .........................................................................................................146
康托尔的超穷数 .........................................................................................................148
超穷基数与超穷序数 .........................................................................................148
连续统假设 .........................................................................................................152
算术的逻辑化 .............................................................................................................156
弗雷格的“概念文字” .....................................................................................156
自然数的定义 .....................................................................................................159
第 5 章 第三次数学危机 ...............................................................................................163
危机:罗素悖论 .........................................................................................................163
集合论悖论 .........................................................................................................163
自我指涉 .............................................................................................................165
悖论的解决方法 .................................................................................................168
逻辑主义进路 .............................................................................................................169
直觉主义进路 .............................................................................................................173
公理集合论进路 .........................................................................................................176
ZFC 公理集合论.................................................................................................177
选择公理 .............................................................................................................180
NBG 公理集合论................................................................................................182
第三部分 计算理论的形成
第 6 章 计算理论的奠基:希尔伯特进路......................................................................186
数学的无冕之王 .........................................................................................................186
希尔伯特问题 .............................................................................................................188
数学的世纪之问 .................................................................................................188
希尔伯特的第 10 个问题 ...................................................................................189
几何的算术基础 .........................................................................................................192
欧几里得的第五公设 .........................................................................................192
模型化方法 .........................................................................................................194
桌子、椅子和啤酒杯:形式系统思想..............................................................195
“形式主义”之父 .....................................................................................................196
有穷主义证明论 .........................................................................................................198
希尔伯特纲领 .............................................................................................................201
可判定性问题 .....................................................................................................201
王者的落幕 .........................................................................................................202
第 7 章 计算不能做什么:终结者哥德尔.............................................
— 没有更多了 —
以下为对购买帮助不大的评价